Examination

Economic Growth and Sustainable Development, NA0167.

Rules

Permitted aids: Pen, paper, and pocket calculator (provided).

Answer 3 questions in total, out of 4 available. Each question is worth 20 points, and where a question is divided into parts, each part gives equal points. (If you answer 4 , I will add up all your points and then multiply by $3 / 4$.) As a broad guideline, there is one question related to each of the following topics.

1. Neoclassical growth theory, and the DHSS model.
2. Directed technological change and sustainability.
3. Consumption, rebound, and sustainability
4. Any or all of the above.
5. (a) Compare the following two models in the following three respects:
i. How Y, R, and w_{R} (the resource price) develop in the long run (assuming balanced growth in the second model);
ii. How well these model results match global aggregate observations of Y, R, and w_{R} for resources such as metals and fossil fuels;
iii. The models' ability to explain (rather than just match) historical observations.

- Model 1 (a variation on the 'limits to growth' model).

$$
\begin{aligned}
Y_{t} & =\min \left\{A_{L t} L_{t}, A_{R t} R_{t}\right\} \\
\dot{A}_{L} / A_{L} & =g \\
\int_{t=0}^{\infty} R_{t} \mathrm{~d} t & \leq S_{0}
\end{aligned}
$$

Labour L is fixed, and hired on perfect markets, whereas the resource R is free to extract and of 'open access' character, i.e. no individual or group has property rights over the resource (and it is not storable after extraction). A_{R} is constant.

- Model 2 (a variation of the DHSS model with a resource in infinite supply but costly to extract, and competitive markets).

$$
\begin{aligned}
Y & =\left(A_{L} L\right)^{1-\alpha-\beta} K^{\alpha}\left(A_{R} R\right)^{\beta} ; \\
\dot{A}_{L} / A_{L} & =g \\
\dot{A}_{R} / A_{R} & =g_{R} ; \\
\dot{K} & =s(Y-X)-\delta K \\
C & =(1-s)(Y-X) \\
R & =\phi X .
\end{aligned}
$$

(b) Neither of the models is much use for predicting the future development of the global economy, partly because they do not include any of "Solow's three mechanisms". Discuss how model 2 might be extended to include these mechanisms, while also assuming a more realistic (but still very simple) model of resource stocks. What difference would this make?
2. Assume an economy on an island with a single product, hammers. The production function is CES, with inputs of labour L_{Y} and iron R, with factor-augmenting technology levels A_{L} and $A_{R} .{ }^{1}$ It can be written

$$
Y=\left[\left(A_{L} L_{Y}\right)^{\epsilon}+\left(A_{R} R\right)^{\epsilon}\right]^{1 / \epsilon}
$$

The price of hiring labour is normalized to A_{L} (so $w_{L}=A_{L}$). Meanwhile, iron is extracted from infinite homogeneous stocks by firms with the extraction function ${ }^{2}$

$$
R=\phi A_{L} L_{R}
$$

[^0](a) i. Set up the representative hammer-producer's static profit-maximization problem, and use it to derive an expression for the relative factor shares of labour and iron in terms of A_{L}, A_{R}, L_{Y}, and R.
ii. Multiply each side of this expression by $\left(w_{L} L /\left(w_{R} R\right)\right)^{-\epsilon}$, and rearrange, in order to obtain an expression for the relative factor shares of labour and iron in terms of A_{L}, A_{R}, w_{L}, and w_{R}.
iii. Find the price of iron w_{R}, which is equal to the unit cost of extraction of iron, and recall that $w_{L}=A_{L}$. Substitute in to your answer to part (ii) above, to obtain an expression for the relative factor shares in terms of A_{R} and parameters ϕ and ϵ.
iv. Assume that $\phi=81$ and $\epsilon=-1$, while $A_{L}=1, A_{R}=1$, and $L_{Y}=100$. You should find that factor share of labour is 90 percent. Find R, iron extraction. And find Y, hammer production.
(b) Assume that 10 islanders work in the research sector, and that the islanders' knowledge production functions are as follows, where z_{l} and z_{r} are measures of research effort (in researcher-years) on labouraugmenting and iron-augmenting knowledge:
\[

$$
\begin{aligned}
A_{L t+1} & =A_{L t}\left(0.998+0.002 z_{l t+1}\right) \\
A_{R t+1} & =A_{R t}\left(0.998+0.002 z_{r t+1}\right)
\end{aligned}
$$
\]

Furthermore, assume that relative investments z_{l} / z_{r} in period $t+1$ are equal to relative factor shares $w_{l} L /\left(w_{r} R\right)$ in period t. (So you do not need to set up and solve the full dynamic problem.)
i. What are relative factor shares in year $t+1$? And by how much (in percent) does R, iron extraction, grow, assuming L_{Y} is unchanged (i.e. $L_{Y}=100$)?
ii. Characterize the development of the economy in the long run.
iii. Explain what happens if, instead, iron starts to run out and its price starts to increase at a constant rate. Comment briefly.
3. "To the extent that it is impossible to design around or find substitutes for expensive natural resources, the prices of commodities that contain a lot of them will rise relative to the prices of other goods and services that don't use up a lot of resources. Consumers will be driven to buy fewer resource-intensive goods and more of other things." ${ }^{3}$
(a) What has in fact happened to the consumption rate of energy-intensive goods (compared to GDP growth) over the last 150 years?
What has caused this change, changes in relative prices or something else? Discuss theory and, if you can, evidence.
(b) Discuss the extent to which consumers' changing consumption patterns in the future may make the transition to a climate-friendly global economy harder to achieve, rather than easier. Does it matter if these changes are driven by income effects or substitution effects?

[^1]4. Assume an economy with competitive markets with a single final good produced in quantity Y using inputs of labour L and resources R. The production function is as follows:
$$
Y=\left(A_{L} L\right)^{1-\alpha} R^{\alpha}(1-\psi D)
$$
where A_{L} is labour productivity and D is the flow of pollution (which does not accumulate), ψ is positive and α is close to zero (so the pollutant has a small factor share). A_{L} and L grow exogenously at constant rates. Resources R can be produced a combination of two inputs X_{i} where $i=$ 1,2 . The inputs are perfect substitutes, and
$$
R=\sum_{i} X_{i}
$$

The inputs differ in two respects. Firstly, the costs of extraction w_{i} differ. Costs are constant for each input, hence they have constant prices, but $w_{2}=(1+\gamma) w_{1}$, where $\gamma>0$. Secondly, input 1 leads to polluting emissions D, according to the following equation:

$$
D=X_{1}
$$

whereas the more expensive input does not cause any emissions. Utility U is production Y minus total extraction costs, $\sum_{i} w_{i} X_{i}$.
(a) i. Find an expression for $M C_{1}$, the marginal social cost of using input X_{1}, in terms of exogenous factors and R.
ii. Find a corresponding expression for $M C_{2}$.
iii. Find expressions for $M B_{1}$ and $M B_{2}$, the marginal social benefits of using the respective inputs. Comment briefly.
(b) i. Find a condition for $M C_{1}=M C_{2}$ in terms of R and $A_{L} L$, and explain what it implies about the switch from input X_{1} to X_{2}.
ii. Describe the path of economic development in this economy as A_{L} and L grow (starting from a low level), assuming that the economy is optimally regulated.
(c) Discuss the relevance of the model to understanding patterns of polluting emissions over time in real economies.

[^0]: ${ }^{1}$ Units: hammers wkr ${ }^{-1}$ year ${ }^{-1}$ and hammers ton-of-iron ${ }^{-1}$.
 ${ }^{2}$ So total labour L is divided between production and extraction. Later on we add research labour too.

[^1]: ${ }^{3}$ Robert Solow, Challenge, 1973, p. 47 .

