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1. Consider the neoclassical growth model with zero population growth, and add

the need for a resource input in the production function. The flow of the re-

source input is denoted R, there is a total stock of the resource S, and there is no

substitute for the resource. There is exogenous labour-augmenting technologi-

cal progress at a constant rate. The discount rate (interest rate) is exogenously

fixed at ρ.

Y = (AL)1−α−βKαRβ ,

Ȧ/A = gA,

K̇ = sY − δK,

S ≥

∫
∞

0

Rtdt.

(a) Assume that there exists a balanced growth path (b.g.p.) on which all

variables grow at constant rates. Find the growth rate of Y on this b.g.p. in

terms of parameters and Ṙ/R.

(b) Consider a competitive final-good producer who makes profits π =

(AL)1−α−βKαRβ − wlL − wkK − wrR. (The price of Y is normalized

to 1.) Take the first-order condition in R to find an expression for wr in

terms of Y and R.

(c) Use your previous answers to find an expression for the growth rate of wr

in terms of parameters and Ṙ/R.

(d) Imagine that you own a small fraction of the total resource stock S, and

that the resource is traded on a perfect market (there are many other

small suppliers). How do you decide when to sell your resource stock?

Given that the other suppliers reason in the same way as you, what must

be the growth rate of wr? Now use your answer to part (c) to find the

growth rate of R.

(e) Discuss briefly the extent to which this model might give a useful—al-

though highly simplified—picture of economic growth and resource use in

the long run.

(a) We can immediately obtain that

Ẏ /Y = (1− α− β)gA + αK̇/K + βṘ/R.

But we know from the capital accumulation equation that Ẏ /Y = K̇/K on a

b.g.p., so

Ẏ /Y = [1− β/(1 − α)]gA + β/(1 − α)Ṙ/R.
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(b) The f.o.c. yields directly that

wr = βY/R.

(c) From the answer for wr we obtain directly that

ẇr/wr = Ẏ /Y − Ṙ/R,

and hence (using the answer to (a)) we have

ẇr/wr = [1− β/(1− α)](gA − Ṙ/R).

(d) If the price were rising at a faster rate than money at the bank then I would

keep the resource, whereas if it were rising more slowly then I would sell. If all

other suppliers reason the same way then wr must grow at the interest rate,

i.e. ẇr/wr = ρ. Hence

Ṙ/R = gA − ρ[1− β/(1− α)]−1 = gA −
1− α

1− α− β
ρ.

(e) In my opinion the picture painted by the model of economic growth and re-

source use in the long run is misleading and not at all useful. The key reason

is that the model of resource stocks and resource extraction is far too sim-

ple. A model is needed in which resources are costly to extract, and where

in addition resource stocks are inhomogeneous so that the cost of extraction

tends to increase as cumulative extraction increases. Given such a model we

can explain current observations of rising extraction and constant prices at

the same time as making predictions about future extraction rates and prices.

2. Consider an economy with a constant population and a constant interest rate

r, and the following aggregate production function:

y = (aly)
1−αxα.

Here α is a parameter between 0 and 1, a is labour productivity, and ly and

x are the quantities of labour and resources used in production. The resource

flow x is given by the following extraction function:

x = lxa/b.

Labour inputs in extraction are lx, the productivity of that labour is a (as

above), and b is an inverse productivity factor representing the difficulty of

extracting the resource: the depth of the marginal resource. The productivity

index a grows exogenously, and total labour L is fixed:

ȧ/a = θa

L = lx + ly.

Finally, we assume that all markets are perfect, and we have a unit continuum

of resource owners each with identical inhomogeneous endowments.

(a) Find an expression for the resource price p in terms of y and x, by taking

the first-order condition on a final-good producer’s profit function.
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(b) Assume a b.g.p. on which quantities of labour are constant and depth b

grows at a constant rate. Find expressions for the growth rate of x, p, and

y on such a b.g.p.

(c) Assume a primitive economy in which resource extraction is just begin-

ning. What can we say about b? Characterize the b.g.p.! What happens

over time?

(d) Assume a ‘mature’ b.g.p. on which b grows at a constant strictly positive

rate. For concreteness assume that ḃ/b = θa on this path. Characterize

the b.g.p.!

(e) Finally, characterize the development of the economy if the resource is

close to exhaustion, and there are no substitutes.

(a) The first-order condition yields

p = αy/x.

(b) On a b.g.p., when labour allocation is fixed, the following growth rates apply:

ẋ/x = θa − ḃ/b;

ẏ/y = (1− α)θa + αẋ/x

= θa − αḃ/b;

ṗ/p = ẏ/y − ẋ/x = (1− α)ḃ/b.

(c) When extraction is just beginning then depth b must be very nearly constant,

so we can approximate ḃ/b = 0. So we have

ẋ/x = ẏ/y = θa;

ṗ/p = 0.

Resource extraction tracks growth in GDP and the resource price is constant!

Over time, since the extraction rate rises, b starts to increase significantly and

the price starts to rise.

(d) Now we have

ẋ/x = 0;

ṗ/p = ẏ/y;

ẏ/y = (1− α)θa.

So the resource extraction rate is constant, the resource price tracks GDP, and

GDP growth is slightly slower.

(e) When the resource is close to exhaustion then the depth again becomes con-

stant, and extraction approaches zero. A extraction approaches zero the price

rises rapidly, but not due to extraction costs, rather due to scarcity. In the

limit the scarcity rent dominates completely and the price rises at rate ρ as in

the simple Hotelling model.
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3. [A]s the earth’s supply of particular natural resources nears exhaus-

tion, and as natural resources become more and more valuable, the

motive to economize those natural resources should become as strong

as the motive to economize labor. The productivity of resources

should rise faster than now—it is hard to imagine otherwise.

[Solow, Is the end of the world at hand?, Challenge, 1973, p47.]

(a) Over the last 300 years the price of energy has been falling compared to

the price of labour.

i. Explain why, in theory, this might lead labour-augmenting knowledge

to grow faster than energy-augmenting knowledge.

ii. Discuss evidence.

(b) Over the next 50 years the price of energy may well rise relative to the

price of labour. Will this lead to rapid increases in the efficiency of energy

use in sectors such as lighting and transport? Discuss theory and evidence.

(a) i. Here you should explain why, because labour and energy are complemen-

tary, the fall in the price of energy might be expected to lead to a fall in

the factor share of energy. Such a fall will lead to a fall in investment in

energy-augmenting knowledge. This may cause energy-augmenting knowl-

edge to fall relative to labour-augmenting knowledge, which would tend

to push the factor share of energy back up since it effectively makes en-

ergy scarcer. So this could explain why the factor share of energy has

stayed rather constant even though the price of energy has fallen relative

to labour.

ii. The evidence suggests that energy-augmenting knowledge has grown at

least as fast as labour-augmenting knowledge. Evidence we discussed in

the course concerns lighting and motive power from combustion of fossil

fuels. More generally, there are myriad uses to which we can put energy

today compared to 300 years ago. Each of these uses implies a completely

new stock of (product-specific) ‘energy-augmenting knowledge’.

(b) In the simple one-sector model with independent knowledge stocks, a rise

in the price of energy should drive a rise in energy-augmenting knowledge.

Conversely, when prices are constant such knowledge should fail to grow. But

the evidence cited in part (a) leads us to reject this model.

Progress in energy-efficiency is not a stationary function of investment. In

sectors such as lighting and transport there are well defined limits to energy

efficiency: for instance, there is a limit to the amount of light (lumens) that can

be generated from a given energy input, and there is a limit to the amount of

motive power that can be generated from a given energy input. Furthermore,

we are approaching these limits; LED lights and the latest internal combustion

engines can be improved upon, but their efficiency cannot be doubled and

doubled again. In the case of lighting, Fouquet claims that lighting efficiency

increased by a factor of 1000 in the UK between 1800 and 2000. But the latest

LED lights are at close to 50 percent of maximum efficiency, so only a factor

of 2 remains available for the future.

On the other hand, note that efficiency improvements in some other sec-

tors—such as domestic heating—may well be limitless, and we may be able

to approach a long-run situation in which homes can be held at the desired

temperature with zero external energy inputs.
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4. Assume an economy with competitive markets in which total aggregate pro-

duction is a function of labour-intensive and energy-intensive production, as

follows:

Y = Y α
1
Y 1−α
2

.

The labour-intensive good is produced according to the following production

function:

Y1 = alL,

where al is labour-augmenting knowledge and L is labour, which is fixed. The

energy-intensive good is produced according to the following production func-

tion

Y2 = arR,

where ar is energy-augmenting knowledge, and R is the energy flow. The price

of energy, wr, is fixed in relation to the wage wl:

wr = ψwl,

where ψ is a positive parameter. Any amount of energy R can be supplied at

this price.

(a) i. Find the relative shares in total product of Y1 and Y2. (That is, find

p1Y1/(p2Y2), where p1 and p2 are the prices of the two goods Y1 and

Y2.)

ii. Consider unit production costs in order to find p1 and p2 in terms of

wl, ψ, al, and ar.

iii. Find total energy use R for a given state of the economy. (This is,

when L, al, ar, and ψ are all fixed and known.)

iv. Assume that a regulator wants to reduce R, and that she can either

boost ψ (and hence wr) through a tax, or ar through a research sub-

sidy. Explain which option she should choose in this economy.

(b) Discuss to what extent the above model is relevant to real economies in

which the energy share of the most energy-intensive products is typically

only about 15 or 20 percent, rather than 100 percent as in the model.

(a) i. Take first-order conditions on the aggregate producer’s profit function to

show that

p1Y1/(p2Y2) = α/(1− α).

ii. The total cost of making quantity Y1 of good 1 is wlL. Therefore the unit

cost is wlL/Y1, hence

p1 = wl/al,

and (by symmetry)

p2 = wr/ar = ψwl/ar.
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iii. We have

p1Y1/(p2Y2) = α/(1− α) =
wl/al
ψwl/ar

Y1
Y2
.

Simplify, and then substitute in the production functions for Y1 and Y2 to

yield

α

1− α
=

ar
ψal

·
alL

arR
,

and hence

R =
1

ψ

1− α

α
L.

iv. Boosting ψ seems like a good strategy (the elasticity of demand for R

w.r.t. increases in ψ is −1), but boosting ar won’t help at all. There is

100 percent rebound in this economy!

(b) The above model is not very relevant to real economies (in which the energy

share of the most energy-intensive products is typically only about 15 or 20

percent). When the energy share of energy-intensive final goods is relatively

low this implies that an increase in the energy-efficiency of the production

process of such goods has relatively little effect on their price, implying that

(for reasonable levels of substitutability between the alternative final goods)

the effect on the quantity demanded is not very great, hence the rebound effect

is not very large.
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