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1. Introduction

This paper adds to the climate-policy literature regarding the relationship between car-

bon pricing and subsidies to clean-energy research. Until 2012 the consensus in this litera-

ture was that emissions pricing is crucial while the role of research subsidies is limited; for

instance, in an influential paper Fischer and Newell (2008) perform a ranking of instruments

and put emissions pricing top and R&D subsidies sixth and last. However, Acemoglu et al.

(2012) develop a model with directed technological change (henceforth DTC) and conclude

that (p.159) ‘optimal regulation involves small carbon taxes because research subsidies are

able to redirect innovation to clean technologies before there is extensive environmental

damage’, and Acemoglu et al. (2016) build a related model in which they use microdata

for the modelling of competition in production and innovation, and argue (p.55–56) that

‘Research subsidies are powerful in redirecting technological change, and given this, it is

not worth distorting the initial production too much by introducing very high carbon taxes

. . . the social planner relies heavily on research subsidies.’ Finally, Greaker et al. (2018)

back up the conclusions of Acemoglu et al. (2012) using an extended model. In this paper

we develop a model with energy-sector DTC with a much more realistic structure than that

used in existing literature, and use this model to deliver both analytical and numerical results

which give a better understanding of the respective roles of emissions pricing and research

subsidies, and restore the primacy of emissions pricing in the ranking of instruments.

In more detail, the contributions of this paper are as follows. The first contribution is

to build a model which includes both DTC and an overall structure similar to IAMs such

as Golosov et al. (2014). We thus have a structure in which inputs into the final good sec-

tor are labour and energy services such as electricity and motive power, energy services

are produced using either fossil fuels or renewables, and emissions flow in proportion to

the burning of fossil fuels. This is important because the structure determines the available

abatement and regulatory options. In our structure there are three mechanisms for reduc-

ing carbon emissions: substitute labour for energy services in the final-good sector; raise

fossil-augmenting knowledge in the production of energy services; and substitute from fos-

sil inputs to clean inputs in the production of energy services. By contrast, in Acemoglu et

al. (2012) and Greaker et al. (2018) emissions are in proportion to the production of dirty

energy intermediates rather than the burning of fossil fuels, and the only way to reduce emis-

sions is to switch from dirty to clean intermediates (it is not possible to economize on fossil

fuels in any conventional sense).1

1A consequence of our structure is that we must account for physical limits on the productivity of primary-
energy inputs (such as coal or wind) in delivering energy services (such as electricity or motive power); a
quantity of fossil fuel containing 1 MW of chemical energy can under no circumstances deliver more than 1
MW of electricity to the final-good sector. Such limits are rarely acknowledged in the literature on techno-
logical change, growth, and energy policy—an exception being Lemoine (2015)—but they have important
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The second contribution is to deliver, in a first-best regulated economy, analytical results

that clarify the roles of emissions prices and research subsidies. We highlight two of these

analytical results here: firstly, given a damage function following Golosov et al. (2014) and

Acemoglu et al. (2016) the Pigovian tax in first best grows without bound (because marginal

damages track potential GDP) hence a transition from fossil to clean energy is inevitable in

first best as long as the unit cost of clean energy is bounded above;2 and secondly, subsidies

to clean-energy research should be higher than subsidies to fossil-energy research during

a transition from a state in which fossil energy dominates to a state in which clean energy

dominates, the reason being that during such a transition each clean-energy researcher has

more future researchers standing on their shoulders than each fossil researcher. Hart (2008)

notes (Proposition 4) that a high rate of investment in a given sector is linked to a high rate

of spillovers and hence more severe undersupply of research in that sector, but Heggedal

(2015) is the first to thoroughly investigate and highlight the need for higher subsidies in

growing sectors; see also Greaker et al. (2018).

The third contribution is to develop a model of DTC with two novel elements which

make crucial differences to the properties of the model. (1) Total research inputs into

the energy sector are endogenous, so the allocation problem in the model is not simply

where to put researchers of whom there is a fixed number, the problem is how many re-

searchers to put into clean and fossil research respectively. The result is that the regulator

typically subsidizes both clean and fossil research.3 (2) We allow for knowledge spillovers

between three knowledge types, labour-augmenting, fossil-augmenting, and clean-energy-

augmenting knowledge. Clean–clean and fossil–fossil spillovers imply path dependence,

but intersectoral spillovers (ruled out by construction in Acemoglu et al. (2012) and Greaker

et al. (2018)) weaken path-dependence because they imply that the productivity of research

in a laggard sector is boosted by knowledge in the other sectors.4

consequences, implying that the price of energy services should approach a lower limit over time rather than
approaching zero over time.

2The results of Acemoglu et al. (2016) are mystifying in the light of this theoretical result. In Acemoglu et
al. marginal damages are independent of the atmospheric concentration, so the social cost of carbon should be
proportional to Y/δ , where Y is current gross production and δ is a discount rate equal to the interest rate plus
the decay rate of carbon minus the growth rate. As long as Y keeps growing and the discount rate doesn’t grow,
the emissions tax should keep growing. But in Acemoglu et al. it follows a hump-shaped path in all simulations.

3In Acemoglu et al. (2012), Acemoglu et al. (2016), and Greaker et al. (2018) the question facing the reg-
ulator is essentially ‘How high do clean-research subsidies need to be in order to ensure that all of the energy-
researchers in the economy switch from fossil-augmenting research to clean-augmenting research?’

4In Acemoglu et al. (2012) there are no spillovers between knowledge types, hence the degree of path
dependence and the strength of lock-in effects are exaggerated, since catching up is more difficult than in
reality. This is also standard in many other models of energy and environment, including Smulders and de Nooij
(2003), Gerlagh (2008), Fischer and Newell (2008), and Hassler et al. (2012). In Acemoglu et al. (2016)
there are spillovers from fossil to clean knowledge in each of a continuum of sectors, modelled as a small
probability that there will be a quantum leap in clean productivity up to the level of fossil productivity. Outside
the climate/energy literature, Acemoglu (2002) develops and analyses a model of DTC with spillovers between
two sectors, and we build on this model to a degree; see also Nordhaus (1973) and Hart (2013), who discuss the
shortcomings of the model without spillovers, and what is needed to replace it.
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The fourth contribution is to take ‘second-best’ seriously. That is—following the termi-

nology of Lipsey and Lancaster (1956)—we add constraints which prevent the achievement

of the Paretian optimum, and investigate the effect on the optimal choices of all the instru-

ments. If we were to adopt a standard framework in which a Paretian (first-best) allocation

could be achieved through regulatory instruments, research subsidies would be very high

to both clean and fossil-energy research, because all forms of research are severely under-

supplied in such a framework (as shown by Jones and Williams, 1998). To avoid this un-

interesting result and ensure a more relevant model we introduce deadweight losses caused

by research subsidization and allow for the ‘stepping on toes’ effect described by Jones and

Williams (1998), and find the unique parameterization of these effects which accounts for

the observed aggregate level of subsidization to all forms of research in the US. We also

introduce a deadweight loss from emissions taxation which is in proportion to the costs im-

posed by the tax, which is consistent with the observation that levels of emissions taxation

currently observed in most jurisdictions are below the optimal level suggested by researchers

such as Nordhaus (2008) and Golosov et al. (2014).

The novel features described above allow us to calibrate the model such that the starting

point is broadly consistent with historical data, in the sense that if we started the model in

1904 instead of 2004 then the model economy would develop in such a way that demand

for fossil and clean energy would be broadly consistent with observations, while the state

of the model in 2004 would be broadly consistent with our chosen starting point.5 We take

this parameterization and perform two policy experiments, and sensitivity analysis.

In the first policy experiment, we compare three regulatory options: (i) laissez-faire;

(ii) optimal regulation (in second-best); and (iii) first-best regulation in the hypothetical

absence of deadweight losses. We find that in the regulated economy (in second-best) both

emissions taxes and subsidies to clean and fossil-energy research are used, and there is a

dramatic reduction in carbon emissions compared to laissez-faire. Subsidies to clean-energy

research are initially large, and gradually decline as the transition to clean energy progresses.

Subsidies to fossil-energy research are modest, which is partly because when fossil energy

is cheaper this makes the transition to clean energy harder to achieve. The emissions tax

starts low and increases monotonically, in line with what we expect from the analytical

results. However, it is initially well below the marginal external cost of emissions (MEC),

because initially—when the tax only makes up a small part of the cost of fossil inputs—

the elasticity of emissions to the tax is low, while the tax causes significant deadweight

5This may be clarified through a counterexample. Acemoglu et al. (2012) set up a model with very strong
path dependence in clean and dirty research, and choose (in their baseline case) a starting point in which the
productivities of clean and fossil inputs are almost equal. This is not consistent with historical evidence since
given strong path dependence and a history (before the first period of the model) of fossil dominance, fossil
knowledge should be far ahead of clean in the first period.
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losses. These results contrast starkly with those of Acemoglu et al. (2012, 2016), where

a very high initial subsidy to clean-energy research rapidly declines to zero, subsidies to

fossil-augmenting research are zero, and emissions taxes are low and declining (Acemoglu

et al., 2012) or hump-shaped (Acemoglu et al., 2016).

In our second policy experiment we investigate the relative importance of the emissions

tax and the research subsidies, and the losses associated with climate-change denial by the

regulator. We find that climate policy is very important, and that the emissions tax is far

more important than subsidies. When a regulator can only use the tax (and cannot subsi-

dize research), 91 percent of the utility gain from second-best optimal policy can still be

achieved; when the regulator can only use research subsidies (and cannot tax emissions),

only 36 percent of utility gains can be achieved; and optimal policy given climate-change

denial yields just 15 percent of the benefits of truly optimal policy. This is radically different

to Greaker et al. (2018), who find that the tax is of marginal importance whereas the research

subsidy is indispensable. Greaker et al.’s result is a straightforward consequence of the con-

struction of their model, where the regulatory problem (as in the models of Acemoglu et al.,

2012, 2016) is effectively how to ensure that all of the fixed number of researchers switch

to clean research; given such a switch, the clean intermediates will soon be cheaper than

fossil-based intermediates, and the climate problem is solved.

Sensitivity analysis shows that the conclusions are robust in the sense that changes in

parameters lead to predictable and limited changes in the results: the key to the results is the

construction of the model rather than the exact parameterization.

Finally note two relevant papers on related topics. First, Peretto (2008) develops a model

of DTC with a structure related to this one, with firms producing differentiated goods and

performing in-house research. Second, the climate policy model developed by Fried (2018)

has many things in common with this one, including a nested structure with an energy inter-

mediate produced using either fossil or clean technology, and spillovers between knowledge

types which limit the strength of path dependence. Fried’s aim is to evaluate the quantitative

impact of a carbon tax on green technologies, which she finds to be large, a result which is

consistent with our result that a climate tax alone can achieve over 90 percent of the benefits

of an optimal combination of a tax and research subsidies.

The paper consists of three main sections. In Section 2 we develop the model, paying

particular attention to DTC but otherwise specifying only as much as we need to derive our

analytical results. We set out the options open to the regulator and explain the presence of

deadweight losses. In Section 3 we derive first-order conditions necessary for a second-

best optimal solution in the market economy. We then perform a similar exercise for a

benevolent social planner (who does not need to use economic instruments and therefore

does not have to worry about deadweight losses), and compare the two to derive analytical

results regarding optimal regulation in first-best. In Section 4 we turn to optimal regulation
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in second best, i.e. when there are deadweight losses associated with the use of economic

instruments. To derive these results we must specify the model fully, parameterize, and

simulate numerically. Section 5 concludes.

2. The model

2.1. The environment

In the model economy there is a fixed number of households that supply labour L inelas-

tically. Their utility U is a discounted function of net consumption X∗t over infinite periods,

with constant marginal utility of consumption, and discount factor per period β . Net con-

sumption X∗t is gross consumption Xt modified by a pollution damage factor exp(−γ1Sγ2
t ),

where γ1 > 0, γ2 ≥ 1, and St is the stock of pollution. Pollution can thus be interpreted

either as affecting utility directly, or as affecting all production sectors equally and therefore

leading to a reduction in net consumption without affecting relative prices or quantities of

traded goods:

U =
∞

∑
t=0

β
tXt exp(−γ1Sγ2

t ). (1)

Final-good production is competitive, and there is a representative final-good production

firm with the production function

Yt = (ALtL)1−αRα
t , (2)

where ALt is labour productivity, Rt is energy services, α is a parameter equal to the factor

share of energy in total production Y . The price of the final good is normalized to 1, and

labour productivity grows exogenously by a factor 1+ θ each period. Energy services R

should be thought of as (for instance) electricity and motive power, i.e. things that are used

directly in the production of final goods such as transport and communication.6

There is a unit continuum of firms producing energy services. The firms—indexed by

i—buy their inputs on competitive markets, and compete monopolistically in selling their

products, quantities Ri, prices pri, and in symmetric equilibrium the elasticity of demand for

6Note that we abstract from capital and set the interest rate exogenously. Since we assume perfect informa-
tion and a constant growth rate of labour productivity AL, if we endogenized the interest rate based on the Euler
equation and CRRA utility, and included neoclassical capital accumulation, we would obtain an almost constant
interest rate, and the quantity of capital would track growth in AL; if we write the resultant production function
as (ALL)1−α−β Kβ Rα = (ALL)1−α [K/(ALL)]β Rα it should be clear that this implies that the addition of capital
would make no significant difference to the behaviour of the model economy.
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each firm’s product is η :

R =

[∫ 1

0
Rη

i di
]1/η

.

In practice, market power may arise in the energy sector due to barriers to entry, fixed costs

and scale economies, etc. In the model, some form of market power is necessary in order to

provide an incentive for research, as is standard in the endogenous growth literature. We set

the mass of firms and the elasticity of substitution between inputs exogenously.7

Production of R requires primary energy inputs C (clean) and D (dirty, i.e. fossil). When

purely clean inputs are used, the production function of firm i is Rit = AcitXcit , where Xci is

the quantity of final goods devoted to the production of clean energy services, and Aci is an

index of the productivity of these goods in both capturing clean energy (for instance from

the wind or sunlight) and converting it into energy services. On the other hand, when purely

fossil inputs are used by firm i, we have Rit = AditDit , where Dit is the flow of fossil inputs

used at t, which is equal to the flow of extraction, Dit =AdxXdit , where Adx is the productivity

of extraction inputs and Xdi is their quantity. We assume that the extraction input is the final

good, hence the price is constant (normalized to 1) and productivity is also constant since the

final good is unchanging. This implies that unit extraction costs pd are constant and equal

to 1/Adx. Finally, energy services from fossil and clean sources are imperfect substitutes for

one another, and when both sources are used we have

Rit = [(AcitXcit)
ε +(AditDit)

ε ]
1/ε

, (3)

so the elasticity of substitution between clean and fossil energy is 1/(1− ε); ε ∈ (0,1).8

Burning fossil fuels D leads to emissions P where P = D, and emissions add to a stock

of pollution S which evolves as follows:

St = G(Ht)+Pt , (4)

where Ht is the set of all emissions levels P for periods prior to t —so Ht = (Pt−1,Pt−2, . . .)

7For the parameterization of η see page 20, and for further discussion on the market structure see Appendix
A.2.

8Here we briefly compare and contrast our energy-sector model with that of Golosov et al. (2014). Firstly,
we simplify by considering just one fossil fuel with constant extraction costs; Golosov et al. have two fuels, oil
which is free to extract but scarce, and coal which has constant extraction costs but not scarce. We simplify in
order to focus on the key issue of this paper, i.e. the respective roles of research subsidies and emissions pricing
in climate policy; it would be interesting to test an extension to two fossil inputs as in Golosov et al. Secondly,
our extraction input is the final good (which has constant productivity and constant price) whereas theirs is
labour (which has increasing productivity and increasing price). This difference is of ‘academic’ interest, since
the result is the same in each case: constant unit extraction costs. For more on why the extraction costs and
prices of non-renewable natural resources tend to be approximately constant see Hart (2016).
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—and G is a strictly increasing function of each of its arguments. There is a limited initial

stock of the fossil resource, Q0, which is homogeneous. Thus we have

∞

∑
t=0

Dt ≤ Q0. (5)

Finally, the factor productivities of each firm in the energy-services sector are functions

of in-house research by that firm, building on general knowledge both within the energy

sector and in the economy as a whole. For details see below.

2.2. Knowledge growth and productivity

We model productivity as a function of knowledge, but distinct from it. It is common in

the growth literature to assume that knowledge and productivity are synonymous, and that

since there is no obvious limit on knowledge there is no limit on productivity. However, this

approach is not reasonable when applied to fossil fuels, where the key step is the conversion

of chemical energy in fossil fuels to electrical or kinetic energy to power the economy:

there is a limit on the energy we can get out of a given quantity of fossil fuel, and when

this limit is approached we say that the efficiency of the process approaches 100 percent

while the productivity approaches the limit. We assume that this limit is approached as

knowledge approaches infinity. The distinction between knowledge and productivity is not

just a theoretical curiosity, since opportunities for increasing the efficiency with which we

can obtain either motive power or electricity from fossil fuels are almost exhausted; for

instance, efficiency of the best modern coal-fired power stations is at approximately 75

percent of the thermodynamic limit.9 Note that there is no limit on the efficiency with

which we can use energy services to generate utility in the final-good production function.

Consider the generation of motive power from fossil fuels. Define the productivity of the

process in firm i as Adi (as in equation 3) and define the theoretical maximum productivity

as Ād , which has the same units as Adi. Assuming a similar situation in the clean sector we

define

Acit = Āc
Kcit

K∗+Kcit
and Adit = Ād

Kdit

K∗+Kdit
, (6)

so when knowledge is zero productivity is zero, and when knowledge approaches infinity

productivity approaches the limit, and the positive parameter K∗ is used to calibrate K in

9The best modern coal-fired power stations reach around 45 percent thermal efficiency (45 percent of the
energy released on burning is converted to electricity), whereas the theoretical limit based on the Carnot cycle
is around 60 percent. See Holman (1980) for theoretical background, and IEA (2012) for a recent discussion.
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relation to A. Define Kct and Kdt as the aggregate knowledge stocks, and assume that

Kct =
∫ 1

0
Kcitdi and Kdt =

∫ 1

0
Kditdi. (7)

So in symmetric equilibrium the levels of aggregate knowledge are simply equal to the

knowledge levels of the representative energy firm in the same period. And in symmetric

equilibrium we have

Act = Āc
Kct

K∗+Kct
and Adt = Ād

Kdt

K∗+Kdt
, (8)

where Act and Adt are productivities of the representative firm.

We now turn to the knowledge production functions, that is the functions linking a firm’s

in-house research effort to the subsequent knowledge within the firm, which in turn deter-

mines the productivity of the firm’s inputs through equation 6. The knowledge production

functions are as follows:

Kcit = (1−δK)Kct−1 +Aσ1
Lt−1 (Kct−1 +σ2Kdt−1)

1−σ1 ζ Zφ

cit , (9)

and Kdit = (1−δK)Kdt−1 +Aσ1
Lt−1 (Kdt−1 +σ2Kct−1)

1−σ1 ζ Zφ

dit , (10)

where φ ∈ (0,1], δK ∈ (0,1], σ1 ∈ (0,1), σ2 ∈ (0,1), and Zcit and Zdit are the quantities of the

research input invested by firm i in the respective sectors. The research input Z is supplied

at price wz. We do not specify at this stage what the input is, since it is not necessary to do

so in order to derive the analytical results of Section 3, but note that in the fully specified

model of Section 4 the input is labour.

The functions imply that firm i’s knowledge in period t + 1 builds purely on general

knowledge in the economy, and not at all on that firm’s knowledge in period t. Thus we

simplify the process by which the benefits of private investment in knowledge filter out

into the public domain, treating this gradual process as a discrete step; in the parameterized

model we set the period length to 10 years.10 In the absence of investment, knowledge

stocks decay, but investment adds to the knowledge stock, building on existing knowledge.

Furthermore, since σ1 and σ2 are both strictly positive this implies that research productivity

in a given sector (for instance clean energy) is an increasing function not only of existing

10The interpretation is as follows. Normally, in continuous time, we expect the effect of a past investment
decision on a firm’s current knowledge stock to attenuate gradually over time, as the old knowledge becomes
outdated and irrelevant, and new knowledge builds on general knowledge in the overall economy. We make
this process discrete; a period in the model is thus equal to the lifetime of an investment, and all firms invest
simultaneously. This feature simplifies the dynamics of the model since investing firms—each period—face
an essentially static problem. Note that this way of modelling is not uncommon in the literature: Aghion and
Howitt (1992) use essentially the same assumption, although there the length of periods is uncertain and there
is only one leading firm, while Acemoglu et al. (2012), in their model of DTC and fossil-fuel demand, assume
that patents last exactly one period in a discrete-time model, giving researchers a static problem.
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clean knowledge, but also of knowledge in the other sectors (in this case, fossil energy and

labour). The following thought experiment shows why this should be the case. Consider an

imaginary global economy run purely on wind power up to the year 1900, when windmills

made of wood with cloth sails are used to generate motive power. At this point a workable

coal-fired steam engine is developed, fossil power takes over, and the windmills are aban-

doned. Over the next 100 years a myriad of technologies (including computers and electric

turbines) are developed, and fossil fuels power the economy. In the year 2000 negative ef-

fects from fossil fuels are discovered, and wind power is revived; clearly the knowledge

developed in the intervening period—both in the overall economy and in the fossil-energy

sector—will be a major help to wind-power researchers. Finally, the parameter φ —the

elasticity of new knowledge production to research inputs—allows for the ‘stepping on

toes’ effect mentioned in the introduction, the basic idea of which is that extra researchers

duplicate the discoveries of existing research.

2.3. Regulation and deadweight losses

In the market economy there is a benevolent regulator who uses economic instruments

to affect the allocation chosen by agents in order to maximize U . The regulator has four

instruments available to her: a subsidy to the energy aggregate R, such that the price paid

for this good is pr(1− sr); an emissions tax τd on each unit of the fossil input D, such that

the price paid for fossil fuels is pd + τd ; and subsidies to clean and fossil research such

that their prices are wz(1− scz) and wz(1− sdz) respectively. Net payments are returned

lump-sum, and we assume that there is no cost of public funds. All of the instruments

are constrained to be non-negative. Thus the regulator can affect the price of energy and

hence the quantity demanded by the final-good producers, the price of fossil inputs used

by the representative energy producer, and investment in C-augmenting and D-augmenting

knowledge by the representative energy producer.

Recall from the introduction (page 3) that given endogenous total research effort in

the energy sector we would expect very large subsidies to both kinds of research, since

research is severely undersupplied in the market compared to first best. Since such high

subsidies are not typically observed in any sector, there must be something else going on

not captured by standard models. And we need to introduce ‘something else’ into our model

to avoid this uninteresting (and unrealistic) result. Furthermore, since we adapted the model

to account for low observed research subsidies, we also adapt the model to account for

the low observed carbon price even in ‘active’ coalitions such as the EU. In both cases we

introduce deadweight losses as a result of the instruments.

In the research sector we assume that subsidy payments cause firms to be less efficient

in their use of the research input than they would be if they faced optimal prices (i.e. the

full price of the input and a shadow price of knowledge equal to the regulator’s shadow
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price).11 We thus distinguish between effective research inputs, Zc, and total research inputs

which we define as Zc(1+ωc) (with equivalent definitions in the fossil sector). These extra

(unproductive) research inputs are in proportion to the square of the subsidy:

Total research inputs (clean) = Zc(1+ωc) = Zc(1+δzs2
zc),

where δz is a positive parameter. In the parameterized model we find the unique value of

δz which (together with φ , the elasticity of new knowledge to research) accounts for the

observed aggregate level of subsidization to all forms of research in the US (see Section

4.2). We find that δz = 1.14, hence given a 30 percent subsidy, 9 percent of research inputs

into the sector are wasted. And if the regulator pays (for instance) 60 percent of research

costs then 29 percent of research inputs are wasted.12

The Pigovian tax on carbon emissions, τd , is paid by energy producers, and raises the

unit cost of the energy intermediate. In an economy with international trade and climate

negotiations, taxation in one country or coalition of countries may cause ‘carbon leakage’

since it raises the price of energy intermediates within the coalition and may therefore cause

energy-intensive industries to move abroad, reducing the benefit of the tax while increasing

costs (see for instance Di Maria and van der Werf, 2008). This may explain the reluctance

of coalitions such as the EU to impose significant general carbon prices (for instance by

ensuring a higher permit price in the EU ETS) despite taking many other costly measures to

reduce their carbon emissions.

It is beyond the scope of this paper to include international trade and climate negotia-

tions. However, we wish to test the idea that research subsidies may be an effective substitute

for carbon pricing when a Pigovian carbon price causes other market distortions. To do so

we introduce such distortions in the theoretical model in a rudimentary way, and compare

results when the distortion is present with results when it is absent; the latter scenario can

be interpreted as yielding optimal climate policy in a global economy in which there is full

coordination.

We assume that the deadweight costs of the tax are simply an enforcement cost—due to

the cost to the regulator of preventing tax avoidance—and that these costs are in proportion

11Raising the shadow price of knowledge would require the regulator to correctly judge the value of each
discovery made by each firm, an impossible task. So what a regulator typically does is to reduce to cost of
research inputs instead. The idea behind the model is that the bigger these subsidies are, the more likely it is
that unproductive researchers will apply for them, and the higher the likelihood that unproductive research will
be funded. As pointed out by a referee, a full model of this effect might follow Jaimovich and Rebelo (2017)
in assuming heterogeneous research labour inputs. See Arrow (1962) for a classic discussion of the case for
research subsidies, and Klette et al. (2000) for an empirical analysis.

12Total research costs for firm i in the clean sector are wztZcit(1+δzs2
zct)(1− szct), as can be seen in equation

12 below. And the expression for the percentage of inputs wasted is δzs2
zc/(1 + δzs2

zc). Again, equivalent
expressions apply in the fossil sector. Note that firms still benefit from the subsidy when δz > 0, but not as much
as they would do if they could perfectly control their costs.
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to the potential savings that firms could make by avoiding the tax. We define this potential

saving as the difference between the unit cost of the energy intermediate when paying the

tax and when not paying the tax, multiplied by total production. Defining these costs as crt

(paying the tax) and c∗rt (avoiding the tax) we have

DWLD = (crt − c∗rt)δτRt ,

where δτ is a positive parameter. The equations for crt and c∗rt (equation C.5) are derived

and presented in Appendix C.1.13

3. Market equilibrium, and optimal regulation in first-best

3.1. The market solution

We now define a market equilibrium of the above economy, given the regulator’s choice

of [srt ,τdt ,szct ,szdt ]
∞
t=0, and assuming that cumulative extraction of fossil fuels approaches

a limit below Q0, so the scarcity rent is zero. To do so we set up the profit-maximization

problem of the representative final-good producer in period t, normalizing the price of the

final good to 1,

max
Lt ,Rt

πt = (ALtLt)
1−αRα

t −wtLt − prt(1− srt)Rt , (11)

and the Lagrangian for energy-producing firm i in period t (where λc and λd are Lagrange

multipliers),

Lit = prit [(AcitXcit)
ε +(AditDit)

ε ]
1/ε −Xcit − (pd + τdt)Dit

−wzt [(1+δzs2
zct)(1− szct)Zcit +(1+δzs2

zdt)(1− szdt)Zdit ]

−λcit [Acit −Fc(Kt−1,Zcit)]−λdit [Adit −Fd(Kt−1,Zdit)] , (12)

and take first-order conditions. These conditions—equations A.2–A.10, shown in Appendix

A.1—yield the following equations in symmetric equilibrium, necessary conditions for an

13Why not assume that deadweight losses are simply in proportion to tax payments? The reason is that this
assumption may lead to the perverse result that leakage leads to higher taxes rather than lower, since a higher tax
causes energy producers to switch to clean inputs, and may therefore lead to lower tax payments even though
the costs imposed on the producers (and hence the incentive to shift production abroad) are greater.
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internal optimum:

Xct

(pd + τdt)Dt
=

(
ActXct

AdtDt

)ε

; (FOC1)

λctAct

λdtAdt
=

(
ActXct

AdtDt

)ε

; (FOC2)

(1+δzs2
zct)(1− szct)wztZct = ηAcztλctAct = ηAcztXct ; (FOC3)

(1+δzs2
zct)

(1+δzs2
zdt)

(1− szct)

(1− szdt)

Zct

Zdt
=

ηAczt

ηAdzt

λctAct

λdtAdt
; (FOC4)

(
Rt

ALtL

)1−α

=
η

1− srt
α

[
Aε/(1−ε)

ct +

(
Adt

pd + τdt

)ε/(1−ε)
](1−ε)/ε

. (FOC5)

Here ηAcz is the elasticity of Ac with respect to investment Zc, (and similarly for ηAdz) so

ηAczt =
∂Act

∂Zct

Zct

Act
.

The interpretation of these equations is as follows. FOC1 and FOC2 show that rela-

tive factor costs and the relative values of factor-augmenting knowledge stocks are equal,

and (since ε is positive) the abundant factor accounts for the major share of costs. FOC3

shows that the marginal cost of research should be equal to its marginal benefit, and FOC4

shows that investments in factor-augmenting knowledge are in proportion to the shadow val-

ues of knowledge, modified by the relative elasticities of knowledge to investment (a sector

with more elastic knowledge attracting higher investment). These results imply that—when

the elasticities are equal—investments are in proportion to factor shares, in accordance with

Hart (2013). Finally, FOC5 shows that effective aggregate energy inputs increase with effec-

tive labour inputs and the productivities of the energy inputs, and decrease in the emissions

tax τd .

On the basis of the above equations we define a market equilibrium as follows.

Definition 1. A market equilibrium of the model economy consists of a resource alloca-

tion [Xct ,Dt ,Zct ,Zdt ]
T
t=0 such that—given an initial state of knowledge K−1, initial pollution

stock S−1, and regulation [srt ,τdt ,szct ,szdt ]
T
t=0 —the relative quantities of energy inputs Xct

and Dt are in accordance with FOC1, total investment is in accordance with FOC3, rel-

ative investment is in accordance with FOC2 and FOC4, effective energy inputs Rt are in

accordance with FOC5, and energy-augmenting knowledge stocks grow in accordance with

equations (7)–(9).

3.2. The social planner’s solution and regulation in first best

Having characterized the equilibrium of the market economy we now turn to the social

planner’s solution, i.e. the allocation which would be chosen by a benevolent planner who
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could simply allocate resources as she wished, without deadweight losses. We use the FOCs

on the planner’s problem to draw conclusions about optimal regulation in first-best (Propo-

sitions 1 and 2). These provide a theoretical understanding of when and why subsidies to

clean research may be larger than subsidies to fossil research in an optimally regulated econ-

omy in which the regulator has access to sufficient instruments—without deadweight losses

—to achieve the first-best (planner’s) allocation.

The benevolent social planner chooses an allocation to maximize U , subject to the fol-

lowing constraints: gross consumption Xt is equal to gross production Yt minus extraction

inputs Xct and pdDt , and research costs wz(Zc + Zd); fossil use Dt leads to emissions Pt ;

emissions Pt add to the pollution stock St ; and research effort boosts the productivities Ac

and Ad . The Lagrangian of this maximization problem follows, where we do not include the

fossil stock restriction because we assume it is not binding:

L=
∞

∑
t=0

β
t
{
(ALtL)1−α [(ActXct)

ε +(AdtDt)
ε ]

α/ε −Xct − pdDt (13)

−wzt(Zct +Zdt)

+νt(Pt −Dt)+ξt [St −G(Ht)−Pt ]

−µct [Act −Fc(Kt−1,Zct)]−µdt [Adt −Fd(Kt−1,Zdt)]
}

exp(−γ1Sγ2
t ).

There are four Lagrange multipliers: ν is the shadow price of polluting emissions, ξ is the

shadow price of the pollution stock, and µc and µd are the shadow prices of the knowledge

stocks.14

Take first-order conditions on the control variables—i.e. Xc, D, Zc and Zd —to yield the

following necessary conditions for the planner (corresponding to FOCs 1, 3 and 4 and 5

above):

Xct

(pd +νdt)Dt
=

(
ActXct

AdtDt

)ε

; (FOC1′)

wztZct = ηAczt µctAct ; (FOC3′)

Zct

Zdt
=

ηAczt

ηAdzt

µctAct

µdtAdt
; (FOC4′)

(
Rt

ALtL

)1−α

= α

[
Aε/(1−ε)

ct +

(
Adt

pd + τdt

)ε/(1−ε)
](1−ε)/ε

. (FOC5′)

Compare the two sets of equations to obtain the following proposition.

14Since pollution affects utility rather than production—and therefore does not affect market prices di-
rectly—we define the Lagrange multipliers of the planner in the corresponding way, which is why the term
exp(−γ1Sγ2

t ) multiplies the entire expression on the RHS. This is simply a matter of definition, analogous to the
difference between current value and present value formulations of dynamic problems.
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Proposition 1. The following equations are necessary conditions for first-best optimal reg-

ulation.

τdt = νt ; (14)

1− srt = η ; (15)

1− szct = λct/µct ; (16)

1− szct

1− szdt
=

λct/λdt

µct/µdt
. (17)

In addition, δτνt = 0 and δz(szct + szdt) = 0.

Proof. A necessary condition for first-best optimal regulation is that the market allocation

under optimal regulation (Definition 1) is identical to the allocation on the planner’s optimal

path. Furthermore, there should be no deadweight losses. Equations 14–17 then follow

directly from comparison of FOC1–FOC5 and FOC1′–FOC5′ when δz = 0. When δz > 0

then first-best can be achieved if the λc/µc = λd/µd = 1, and hence research subsidies are

zero, so the necessary conditions above still hold.

Equation (14) shows that we have a standard Pigovian tax in first-best. Equation (15)

shows that the subsidy to the energy intermediate is strictly positive, reflecting the presence

of market power in the energy sector, which leads individual energy producers to restrict

their production. Equation (16) shows that the proportion of research costs paid by firms

themselves should be equal to the ratio of the firms’ valuation of productivity to the plan-

ner’s valuation; so if the planner values an increase in firm productivity twice as highly as

the firm, then the regulator should pay 50 percent of firm research costs in first-best. The

most interesting result is equation (17), which shows that subsidies to clean research relative

to subsidies to fossil are equal to the ratio of (i) the relative shadow prices of the productiv-

ity indices for the representative firm, to (ii) the relative shadow prices of the productivity

indices for the regulator. So clean research is more heavily subsidized than fossil research

when clean research is undersupplied in the market relative to fossil research.

3.3. The path of the Pigovian tax and subsidies to clean-energy research

When is clean research undersupplied relative to fossil? We return to this question after

establishing Lemma 1 on the path of the Pigovian tax and the consequences for clean and

fossil energy. Throughout this section we follow Golosov et al. (2014) and Acemoglu et

al. (2016) by setting γ2 = 1, implying that marginal damages are only a function of gross

production X (recall equation 1). Allowing for γ2 > 1 here (which we do in the numerical

model) would complicate the analysis without adding important insights.

Lemma 1. The Pigovian tax τd increases without bound in first-best. Hence there must exist

a time T beyond which clean energy dominates (in the sense that AcT XcT > AdT DT ) as long
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as the unit cost of delivering clean energy ActXct is bounded above for all Xc and t. This

holds even when fossil stocks are infinite.

Proof. First we prove that τdt increases without bound, then we prove the second result.

We know (equation 14) that τd = ν , i.e. the Pigovian tax is equal to the shadow price of

polluting emissions. Take the FOC on (13) in Pt to show that

νt = ξt +βξt+1
∂Gt+1

∂Pt
+β

2
ξt+2

∂Gt+2

∂Pt
+ · · · ,

and then substitute in the FOC in St —which states that γ1Xt = ξt when γ2 = 1—to show

that

νt = τdt = γ1

(
Xt +βXt+1

∂Gt+1

∂Pt
+β

2Xt+2
∂Gt+2

∂Pt
+ · · ·

)
. (18)

Since X increases without bound as long as τdt is bounded above it follows directly that τdt

increases without bound.

Now to the second result. Since τdt increases without bound, the net price of fossil

inputs increases without bound. Fossil efficiency Ad is bounded above (by physical laws),

so if augmented clean inputs AcXc are not to be preferred in finite time, the unit cost of these

inputs must grow without bound.

The intuition behind Lemma 1 is straightforward. Marginal damages—and hence also

the Pigovian tax—are in proportion to gross production X . As labour productivity increases

without bound, X increases without bound, and hence the Pigovian tax increases without

bound. If the costs of clean energy are bounded, there is certain to be a transition from fossil

to clean in first best.

What are the consequences of the switch from fossil to clean energy for research subsi-

dization? To focus on this question we begin by defining four elasticities which determine

how existing knowledge spills over to boost future knowledge, and rule out asymmetries in

these elasticities which would otherwise cause fossil and clean-energy research to be treated

differently. We define ηAc/c as the elasticity of Act+1 to Act , and ηAd/c as the elasticity of

Adt+1 to Act , with analogous definitions of ηAd/d and ηAc/d . Thus (for instance)

ηAc/ct =
∂Act+1

∂Act

Act

Act+1
.

We then have Proposition 2.

Proposition 2. Assume an economy without deadweight losses in which ηAc/d = ηAd/c = 0

and ηAc/c = ηAd/d . Then (i) if the social planner’s allocation is a balanced growth path

then szc = szd in an optimally regulated economy; and (ii) if the social planner’s allocation

15



involves a monotonic increase over time in the factor share of input C relative to input D

then szc > szd in an optimally regulated economy.

Proof. See Appendix B.

The first result is in the spirit of Hart (2008), who derives a related result when research

may either augment labour or reduce abatement costs. The intuition behind it is as follows:

on a balanced growth path on which emissions are optimally taxed, clean and fossil research

are equally undersupplied, hence there is no reason to favour one over the other through

larger subsidies to one than the other.

The second result shows that if there is a technology transition in which one sector

(e.g. the fossil sector) diminishes in importance while another (clean) increases, then re-

search into the increasingly important (clean) sector should be subsidized relative to the

other. The reason is that clean knowledge today spills over to clean knowledge tomorrow

(and similarly for fossil to fossil), and this contribution cannot be captured by the firm.

During a technology transition from fossil to clean the value of these spillovers is pro-

portionately larger for clean-augmenting knowledge than for fossil-augmenting knowledge,

implying that clean knowledge, ceteris paribus, should be subsidized. Metaphorically, each

researcher in the clean-energy sector will have many future researchers standing on their

shoulders during a phase in which the share of clean energy is growing, and this justifies a

higher subsidy. This follows Hart (2008) (Proposition 4) and especially Heggedal (2015).

4. Optimal regulation in second best

Regulatory instruments are in reality imperfect, and in the model we capture this by

assuming that their use causes deadweight losses, as discussed in the introduction and spec-

ified in Section 2.3. In Sections 3.2 and 3.3 above we set the relevant parameters to zero

and focused on the first-best regulatory solution, while in this section we account for the

deadweight losses and hence analyse second-best regulatory solutions. In the presence of

deadweight losses we can no longer derive useful analytical results from the first-order con-

ditions, hence the focus of this section is to define the regulator’s problem, parameterize the

model, and run policy experiments.

4.1. The regulator’s problem

The regulator’s problem is to choose the path of the regulatory instruments in order to

maximize discounted net production. Discounted net production is final-good production

minus input costs, including the cost of the unproductive activity induced by the use of
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research subsidies and the deadweight loss associated with Pigovian taxation:

max
[srt ,szct ,szdt ,τdt ]

T
t=0

U =
T

∑
t=0

β
t
[
(ALtL)1−αRα

t −Xct − pdDt −δτ(crt − c∗rt)Rt (19)

−wzt((1+δzs2
zct)Zct +(1+δzs2

zdt)Zdt)
]

exp(−γ1Sγ2
t ),

where ALt evolves exogenously and the paths of the variables Rt , Xct , Dt , Zct , Zdt , and St

are determined by the choices of optimizing firms which take the regulatory instruments as

given. We specify the research input as labour, which is supplied elastically at the wage

paid to labour in the final-good production sector (so wzt = wt). As long as labour in energy

research is a very small proportion of total labour (in our model it is much less than 1

percent) this simple approach is effectively equivalent to the more complex approach of

assuming fixed total labour and arbitrage between the production and research sectors.

The link between the regulatory instruments and firm choices is described by equations

A.1–A.10 (Appendix A.1), equation C.5 (Appendix C), equations 7–9 (Section 2.2), and

the stock equations defined below (21–22). See Appendix C for equations as used in the

numerical model, and their derivation from the above. Note also that when the limit on

fossil stocks is binding—as it is in some of our policy experiments, and in laissez faire—

we must extend the model by adding the scarcity rent to the fossil price faced by energy

firms; see Appendix C.3.

4.2. Parameterization

We start by parameterizing the final-good sector, then we tackle the thorniest problem,

which is to find values for φ and δz determining the strength of the stepping-on-toes effect

and deadweight losses due to research subsidies respectively. We complete the parameteri-

zation with the stock–decay and damage models, and the energy sector.

The final-good sector

In the final-good sector we assume that the growth rate of labour productivity is 2 percent

per year (giving an overall annual growth rate of close to 2 percent, in line with the Maddison

data and following Acemoglu et al. (2012) and Nordhaus’s DICE 2007 calibration), and set

the energy share (i.e. α) to 0.05. Following Nordhaus, we set the interest rate to 5.5 percent

per year, giving β = 1.055−10.

Stepping on toes and deadweight losses from research subsidies

Here we calibrate the stepping-on-toes effect discussed by Jones and Williams (1998)

and the deadweight losses from research subsidization which prevent the achievement of

first-best. Our approach is to specify a simple endogenous growth model without an energy

sector, and calibrate it to yield (i) 2 percent annual growth (22 percent per 10-year period),
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and (ii) 5 percent of resources devoted to research (s = 0.05) in a regulatory optimum in

which 30 percent of total research funding comes from the state (sz = 0.3).15 We then take

the parameter values for φ and δz derived in the model and assume that the same values

apply in the energy sector. Furthermore, we derive the following equation for ζ in terms of

L:16

ζ = (δK +θ)/[(sL)/(1+δzs2
z )]

φ . (20)

The model is described in detail in Appendix D.1, and the results are presented in Table 1.

Table 1: Parameters fixing the effectiveness of research subsidies

β θ δK φ δz

0.5854 0.22 0.01 0.1857 1.14

Given that, in balanced growth, research subsidies are 30 percent, the value of δz implies

a relatively modest 9 percent loss of efficiency in the research sector due to the subsidy. The

choice of δK = 0.01 implies that the decay rate of knowledge per 10-year period is 1 percent;

this slow rate of decay captures the idea that old knowledge will become irrelevant over time

given overall technological progress in the economy.

The value of φ —the elasticity of aggregate new knowledge to aggregate research ef-

fort—is more striking, at just 0.19: why does production of knowledge not double when

inputs double, yielding a unit elasticity? The reason is straightforward. As Romer (1994)

discusses, knowledge is a non-rival good, and understanding the implications of this fact is

key to understanding the growth process. One implication—completely standard in growth

theory—is that a non-rival good can be used by any number of agents simultaneously. An-

other, however, is that the rate of production of knowledge does not necessarily increase

when inputs are duplicated. Consider a researcher in a laboratory investigating some ques-

tion, starting at time t0, and assume that at time t1 the researcher finds the answer. Now add

an identical researcher in an identical laboratory performing identical research, also starting

at t0. Clearly if the researchers are truly identical then they will find the same answer simul-

taneously, and the rate of increase in knowledge will be unchanged. In reality we know that

researchers are not identical, nor do they work on identical questions, and these differences

will give rise to an increasing relationship between the number of researchers and the rate of

technological progress. However, there is no reason a priori to assume that φ is anywhere

close to 1.

15The growth rate comes from Maddison data, and the research data comes from the National Science Foun-
dation.

16Recall that ζ is the parameter controlling the productivity of the research input (see equations 9 and 10).
The equation comes from equation D.4, given that δA = δK .
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The idea that many researchers compete to come up with the same innovation is stan-

dard in the patent-race literature (see for instance Reinganum, 1982), but has received less

attention in the growth literature. Indeed, in most of the growth literature, the elasticity

represented by φ is assumed (by default) to be equal to 1 (see for instance all the models

discussed by Acemoglu, 2009, in Chapters 13 and 14). But several authors in the growth

literature—notably Stokey (1995) and Jones and Williams (2000)—have discussed the ten-

dency for duplication of research effort, the latter denoting it as the stepping-on-toes effect

and setting the elasticity which we denote as φ equal to 0.5. Venturini (2012) performs a

series of estimations of a generalized growth function using US data, in all of which the

estimated value of φ is less than 0.05.

The stock–decay model and damages

The stock model is set up to match model predictions for a timescale of up to 500 years

into the future.17 Subject to this caveat we are able to build a very simple model which is

consistent with long-run balanced growth with constant emissions. The stock–decay model

is as follows, where S is the atmospheric stock and O may be loosely interpreted as the

oceanic stock:

St+1 = Dt+1 +(1−δ1)St +δ2Ot ; (21)

Ot+1 = (1−δ2−δ3)Ot +δ1St . (22)

Note that S is defined as the excess stock of carbon in the atmosphere, measured in ppmv,

i.e. it is the total stock in ppmv minus 280 (the stock prior to anthropogenic emissions).

We parameterize the damage model to match the damage function of the Nordhaus/DICE

model. Note that we could have used other models—such as those of Nordhaus (2008) or

Golosov et al. (2014)—without significantly affecting the results.

The parameters and starting values for the stock–decay and damage models are shown

in Table 2. Regarding the stock–decay model, there is a rather rapid exchange of carbon

between the atmospheric stock and the intermediate sink, and a slow loss of carbon from the

intermediate sink out of the system. Marginal damages are almost independent of the stock,

17It is well known that the dynamics of the atmospheric carbon stock are very poorly approximated by as-
suming a constant decay rate of additions to the stock (or first-order linear kinetics). As carefully explained by
Archer et al. (2009), the reason for this is that the primary sink for atmospheric CO2 is the oceans, but CO2 in
the oceans does not disappear; dissolved CO2 is in a dynamic equilibrium with atmospheric CO2, and as the
stock of dissolved CO2 increases so does the flow back from the oceans to the atmosphere. The result is that
the decay rate in a linear equation falls both over time (given a single pulse of emissions) and as cumulative
emissions increase (given a continuous flow of emissions). The natural way to capture this feature is to add
additional stocks, for instance an atmospheric stock and an oceanic stock. We do this in a very simple way, with
the aim of replicating the behaviour of the atmospheric stock as modelled by Archer et al. (2009). However, we
limit our ambition to replication of the properties of one of their models, over a timescale of up to 500 years,
for relatively modest total emissions. Our model is parameterized to yield results consistent with the GENIE-16
CS model for the case of a 1000 Pg pulse for the first 500 years.
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hence there is no climate catastrophe, just steadily increasing costs.

Table 2: Parameters and starting values for the stock–decay and damage models.

Stock–decay Damage

Parameters Starting values Nordhaus

δ1 = 0.095 S = 118.6 γ1 = 2.2×10−5

δ2 = 0.095 O = 44.5 γ2 = 1.25
δ3 = 0.024

The energy sector

We now turn to the energy sector: σ1 and σ2; η , ε , and δτ ; and Ac0, Ad0, Āc, Ād , K∗, pd ,

and Q0.

We start with DTC and hence the parameters σ1 and σ2 in equations 9 and 10 (the equa-

tions for knowledge accumulation). The empirical literature on DTC in the energy sector has

tended to focus on establishing the existence of an effect of input prices on input-augmenting

knowledge (for instance Newell et al., 1999, Popp, 2002), and furthermore establishing that

new sector-specific knowledge (fossil, clean) tends to build on existing knowledge within

the sector (for instance Noailly and Smeets, 2015, Aghion et al., 2016). However, there is

little or no guidance in the literature on the exact form of the knowledge production func-

tion; for discussions of this issue see Acemoglu (2002) and Hart (2013). We therefore set σ1

and σ2 to values we judge to be reasonable—0.7 and 0.1 respectively—and test alternatives

in sensitivity analysis. The choice of σ1 implies that the effect of technological progress in

the final-good sector on the productivity of research into energy-augmenting knowledge is

large, in line with the intuition suggested by the discussion on wind technology in Section

2.2. Recall that the parameter σ2 can be interpreted as the likelihood that a discovery in

the clean sector is also usable in the fossil sector, and vice versa; the low value reflects the

idea that the majority of research in the respective sectors will not be relevant to the other,

consistent with the analysis of authors such as Noailly and Smeets (2015) and Aghion et al.

(2016).

The parameter η determines the degree of market power enjoyed by energy producers

(when η = 1 there is perfect competition) and hence the profits made by energy firms. We

assume that barriers to entry are small, so long-run profits should be small. Based on this

assumption we find the following expression for η :

η = (1+θ)/[1+θ +φ(δK +θ)]. (23)

For the derivation and discussion see Appendix A.2.

We set ε = 0.75, implying that the elasticity of substitution between clean and fossil

sources in generating energy services (given by 1/(1− ε)) is 4. This parameter is difficult
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to estimate, for various reasons including the difficulty of separating short- and long-run

elasticity of substitution, and the difficulty of knowing what the elasticity will be during the

crucial phase when the fossil and clean sectors are of approximately equal size. We choose

a relatively high value to reflect the idea that the difficulty of substituting clean for fossil as

the proportion of clean increases will diminish over time thanks to new technologies in (for

instance) energy storage.18 And we set δτ = 0.1, so deadweight losses on implementing and

enforcing the emissions tax are 10 percent of the costs that the tax imposes on firms.

It remains to specify the starting values of Ac and Ad , the limiting values Āc and Ād ,

the level of K∗ (thus determining the starting values of Kc and Kd), the level of pd , and the

initial fossil stock Q0. Our aim is to find reasonable values which are broadly consistent

with the available evidence. This means that our starting point should be consistent with a

history of low investment in clean technology compared to fossil, and that the limits on the

productivities of fossil and clean technology should be realistic, implying that (at current

fossil extraction costs) the limiting cost of clean energy is broadly similar to that of fossil

energy. Furthermore, the starting values must be consistent with observed emissions in

‘period zero’ (2005–2014), which is the period prior to the first period in the model. This

process is described in Appendix D.2. The parameterization results in a current clean-energy

price 2.67 times higher than the fossil-energy price, while in the limit (when knowledge

approaches infinity but scarcity is zero) the costs of producing energy from clean and fossil

inputs are equal.

4.3. Policy experiments

We now have a fully calibrated model, which we use to perform two policy experiments

in our baseline parameterization, before turning to sensitivity analysis.

1. Policy experiment 1 (PE1):

• First-best (hypothetical);

• Second-best (optimal);

• Laissez-faire.

2. Policy experiment 2 (PE2):

• Second-best where regulator can only use emissions pricing;

• Second-best where regulator can only use research subsidies;

18There is a lack of agreement in the literature about this parameter: for instance, Acemoglu et al. (2012) use
two values, a low value of 3 and a high value of 10, whereas Golosov et al. (2014) choose a benchmark value
of just 0.95. The problem is that until recently the consensus of existing research was that the elasticity is less
than 1 (see Stern, 2012), but common sense tells us that it must be higher. (If the elasticity is less than 1 then
when the cost of clean energy falls its factor share also falls!) This situation is remedied by Papageorgiou et
al. (2017), who estimate the elasticity of substitution between clean and dirty energy inputs of macroeconomic
production functions and put the elasticity in electricity generation at 2, and outside this sector 3.
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• Second-best where regulator is a climate-change denier.

The purpose of PE1 is to investigate optimal regulation in our baseline (second-best)

scenario, and to compare the path of economy in this case with (a) the hypothetical case

in which first-best regulation is possible, and (b) laissez-faire. In PE2 we investigate the

effect of restrictions on the behaviour of the regulator, in order to shed light on the relative

importance of emissions pricing contra research subsidies, and on the overall importance of

climate policy compared to optimal policy pursued by a climate-change denier. The results

are presented in Figures 1 and 2, and Table 3. The figures show the paths of key variables,

whereas in Table 3 we show the net present value of utility in each scenario.

Policy Experiment 1

The results of PE1 are illustrated in Figure 1. The difference between first-best and

second-best allocations is small (dashed and continuous lines), whereas the allocation in

laissez-faire is radically different, with a much later transition to clean energy (Figure 1(b))

and hence a much higher maximum atmospheric carbon concentration (Figure 1(a)). In the

case of laissez-faire, the transition is driven by the exhaustion of fossil fuels (and hence

rising scarcity rent) rather than policy. In Table 3 we see that the differences in the NPV

of utility between all the scenarios are modest; this is a consequence of the high rate of

discount and the conservative (Nordhausian) damage function. In the third column we see

that the difference in utility between the second-best and first-best allocations is significant:

if we consider the utility gain on moving from laissez-faire to the second-best optimum as

100 percent, then an extra 34 percent could be gained in the hypothetical first-best scenario

without deadweight losses.

Regarding the emissions tax in second-best, in Fig. 1(c) we see that it rises monotoni-

cally over time, as we know from Lemma 1 must happen in first-best when the tax is equal to

the marginal external cost of emissions (MEC). However, the emissions tax in second-best

is not exactly equal to MEC, due to the presence of deadweight losses. It is initially well

below MEC (which we call sub-Pigovian), because initially—when the tax only makes up

a small part of the cost of fossil inputs—the elasticity of emissions to the tax is low, while

the tax causes significant deadweight losses. Over time, the tax rises, hence the elasticity

of emissions to the tax rises, and the optimal second-best tax approaches MEC. Our main

focus is on the time path of the emissions tax rather than its level at any one time. However,

it is worth noting that the initial level of the tax in first-best adds 15 percent to the price of

fossil fuel. After allowing for our simplification of only considering one fossil fuel, this is

broadly in line with Nordhaus (2008).19

19See for instance Nordhaus (2008) Table 5.4. Nordhaus’ optimal price is USD 12 per ton of CO2 in 2015,
corresponding to USD 20 per ton of coal and USD 4.3 per barrel of oil. Taking the coal price as USD 50 per ton,
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Figure 1: Transition paths in PE1: (a) Atmospheric carbon concentration, ppm; (b) Inputs of augmented clean
energy as percentage of total, AcXc/(AcXc +AdD); (c) The emissions tax τd and the marginal external cost of
emissions; (d) Percentage of research costs paid by subsidy in each sector (clean and fossil).

Turning to research subsidies, in Figure 1(d) we show subsidies for clean and fossil re-

search effort, and compare them to the subsidies which would be applied in the absence

of deadweight losses (dashed lines). In both cases clean research is subsidized more than

fossil during the transition from fossil to clean technology, as expected from Proposition

2. The extra subsidization for clean research is greatest initially, when the clean ‘pioneers’

get relatively little benefit from their discoveries (because the clean share is small) but de-

liver big social benefits (because many future researchers will stand on their shoulders): the

Heggedal effect. A notable feature is that the initial gap between clean and fossil subsidiza-

tion is much greater in second-best than in the hypothetical first-best scenario. The reason is

that in second-best the subsidy is raised partly because of the standing-on-shoulders effect

described in Proposition 2, but also to compensate for the sub-Pigovian emissions taxes. We

check this by running scenarios in which δτ = 0, so there are no deadweight losses from

emissions taxes. Then the low initial tax disappears, as does part of the high initial subsidy.

Subsidies to fossil research fall gradually to zero in second-best, but are rather constant

in first-best. The decline in second-best is because when fossil inputs are more productive,

deadweight losses from fossil taxation are greater; more resources have to be put into en-

and the oil price as USD 50 per barrel, this implies that around 40 percent of the 2015 coal price is accounted
for by the optimal tax, but just 8 percent of the oil price.
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forcing compliance with the tax when the incentive to cheat is greater. So fossil efficiency

—always a good thing in first-best—has a downside in second-best because it makes the

clean transition harder to enforce.20

Table 3: Utilities (NPV over period 2015–2114) compared to laissez-faire.

NPV utility Utility gain from policy
(normalized) (% of feasible max)

First-best, optimal policy 100.27 134
Second-best, optimal policy 100.20 100
Second-best, no research subsidies 100.18 91
Second-best, no emissions taxes 100.07 36
Second-best, climate-change denial 100.03 15
Laissez-faire within energy sector 100.00 0

Policy Experiment 2
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Figure 2: Transition paths in PE2: (a) Atmospheric carbon concentration, ppm; (b) Inputs of augmented clean
energy as percentage of total, AcXc/(AcXc +AdD); (c) The emissions tax τd and the marginal external cost of
emissions; (d) Percentage of research costs paid by subsidy in each sector (clean and fossil).

20Note also that subsidies to fossil research start to increase long after the clean transition. However, actual
fossil research is extremely low at this time, and the reason for subsidizing it is that (a) it is then highly productive
because there is little stepping-on-toes when there are few researchers, and (b) the ideas generated spill over to a
small extent (with a one-period delay) to boost clean knowledge! So given our model of knowledge production
and spillovers, subsidizing research in very small sectors may be advantageous because of high returns and
spillovers to other (larger) sectors.
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Recall that the purpose of PE2 is to shed light on the relative importance of emissions

pricing and research subsidies, and on the overall importance of climate policy compared

to optimal policy pursued by a climate-change denier. We start by looking at the effect of

restricting the regulator by ruling out research subsidies, so the regulator must rely purely

on emissions taxes. This restriction has only a small effect on the allocation, with the paths

of atmospheric carbon and sectoral energy supply being similar to the second-best optimal.

We can see this by comparing the ‘dot–dash’ curves in Figure 2 (a) and (b) with the corre-

sponding second-best curves in Figure 1. Regarding emissions taxes, the degree to which

the initial tax is sub-Pigovian is reduced, as we expect given the inability to subsidize re-

search. The minor overall effect of the restriction is confirmed in Table 3, where we see

that the restricted regulator (unable to use research subsidies) can achieve 91 percent of the

utility increase which can be achieved by the unrestricted regulator.

Next we analyse the effect of ruling out emissions taxes, so the regulator must rely on

research subsidies. This restriction has a very large effect on the allocation, with the paths

of atmospheric carbon and sectoral energy supply being far from the optimal path, and

instead close to laissez-faire (compare panels (a) and (b) in Figures 1 and 2, dashed lines in

Figure 1 and dot–dash in Figure 2); as in laissez-faire, carbon stocks are exhausted and the

atmospheric carbon concentration peaks at over 1000 ppm. The main difference between

the laissez-faire and no-tax scenarios is that, in the latter, fossil consumption is somewhat

delayed, a delay which is achieved through large and sustained subsidies to clean-energy

research. On the other hand, subsidies to research into fossil-energy efficiency are actually

lower in this scenario than in the unrestricted scenario of Figure 1. The reason is related to

the reason for low fossil-research subsidies in PE1: fossil efficiency—always a good thing

in first-best—has a major downside when the regulator is trying to encourage a transition

to clean energy but is unable to tax fossil fuel inputs, because it makes fossil inputs more

attractive.21 Again, our conclusions about the effect of the restriction are borne out by the

effect on utility shown in Table 3, where we see that the restricted regulator (unable to use

emissions taxes) can achieve just 36 percent of the utility increase which can be achieved by

the unrestricted regulator.

The third case in PE2 is when the regulator is assumed to be a climate-change denier,

by which we mean that she attributes climate damages to forces beyond human control

rather than carbon emissions. She therefore sets the shadow price of carbon emissions to

zero. Now the path of atmospheric carbon and sectoral energy supply is extremely close to

laissez-faire, and emissions taxes are (as expected) zero. Research subsidies are significant,

and average subsidies to clean-energy research are higher than to fossil-energy research.

21Once the clean transition has happened and fossil scarcity has kicked in then the regulator is faced by a
completely new situation with very scarce (expensive) fossil fuels and neglected fossil efficiency; this explains
the dramatic rise in fossil-research subsidies after 2100.
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Research is subsidized because of knowledge spillovers, and the subsidy to clean is greater

than the subsidy to fossil during the transition from fossil to clean energy, which takes place

throughout the period for which we present results in Figure 2. And in Table 3 we see that

the research subsidization implemented by the climate-denying regulator yields an increase

in utility which is just 15 percent of what can be achieved by an optimizing regulator.

4.4. Sensitivity analysis

The sensitivity analysis shows that the qualitative conclusions of the model are robust

to the choice of parameters, and the effects of changes in parameters are for the most part

predictable.

• When we double δz —doubling deadweight losses from research subsidization—re-

search subsidies are greatly reduced (starting at 20 percent for clean-energy research

and declining to 12 percent) while other results are broadly unchanged, as we expect

given the relatively minor role played by research subsidies in the baseline case.

• When we double δτ —doubling deadweight losses from emissions taxation—the re-

sults illustrated in Figure 1(c) and (d) are accentuated: in short, the initial tax falls

further, and the initial clean-research subsidy rises further. The timing of the clean

transition is largely unaffected. On the other hand, as mentioned above, when we set

the deadweight loss of emissions taxes to zero the low initial tax disappears, as does

part of the high initial subsidy.

• When we reduce the long-run cost of clean energy by a factor of 1.25 there is less

need for research subsidies, and an earlier transition.22 The relative importance of the

emissions tax (large) and research subsidies (smaller) remains broadly the same.

• When we reduce ε to 0.5 (reducing the elasticity of substitution from 4 to 2) the

effect on the results is dramatic, because it means that significant fossil-fuel inputs are

demanded even when the net price of fossil energy is considerably higher than clean

energy. The result is that fossil-fuel stocks are gradually exhausted, and atmospheric

carbon rises steadily beyond 600 ppm. Furthermore, because the transition from fossil

to clean is much slower there is less need for the subsidy to clean-energy research, and

clean and fossil-energy research subsidies track each other.

• When we reduce the spillover parameters, especially σ1 which determines spillovers

from labour-augmenting knowledge into the energy sector, this makes progress in

clean-energy technology harder to achieve. The result is that the transition is delayed,

22When we increase the long-run cost of clean energy the reverse applies.
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and the initial subsidy to clean research is increased, while there is little effect on the

path of the emissions tax.

• If we increase the fossil stock, this affects the laissez-faire and no-tax scenarios in

which the stock is exhausted. Utility in these scenarios goes down, because the

scarcity rent (which acts as a proxy for the emissions tax) goes down.

5. Conclusions

In climate policy, the potential role of subsidies to clean research has recently gained

increased attention (Acemoglu et al., 2012, 2016). In this paper we develop and calibrate a

model to investigate the role of such subsidies: the basic structure of the model is intended to

mirror that of IAMs such as Golosov et al. (2014), and it includes a model of directed tech-

nological change which is broadly consistent with historical data and physical restrictions

regarding the energy sector and the overall economy.

We deliver analytical results in first best that clarify the roles of emissions prices and

research subsidies. In Lemma 1 we show that given a standard damage function (as used by

Golosov et al. (2014) and Acemoglu et al. (2016)) the Pigovian tax (and also the net price

of using fossil inputs) increases without bound in a growing economy, because marginal

damages are in proportion to gross production. This also implies that in first-best there is

no change in the path of the optimal carbon tax when we compare models with DTC and

with exogenously determined productivity. These results contrast strongly with those of

Acemoglu et al. (2012) and Acemoglu et al. (2016). And in Proposition 2 we show that the

motivation for higher subsidies to clean-energy research than to fossil-energy research in

first best is that during a transition to clean energy each ‘clean’ researcher has more future

researchers standing on her shoulders, an effect previously described by Heggedal (2015).

These clarifications are important in the light of existing literature—such as Acemoglu et al.

(2016)—in which the reader may gain the impression that a generally applicable motivation

for high subsidies to clean research is that because such subsidies can redirect research

effort, they should be used instead of a high carbon tax. This kind of motivation is only

relevant in a second-best regulatory optimum when carbon pricing is either not available to

the regulator, or are associated with deadweight losses.

We calibrate the model such that the starting point is broadly consistent with histori-

cal data, include deadweight losses caused by the use of policy instruments, and perform

policy experiments and sensitivity analysis. The key conclusions are as follows. In the op-

timally regulated economy both emissions taxes and research subsidies are used, and there

is a dramatic reduction in carbon emissions compared to laissez-faire. Subsidies to clean-

energy research are initially large, and gradually decline as the transition to clean energy

progresses. Simultaneously there are significant subsidies to fossil-energy research. The
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emissions tax starts low and increases monotonically, in line with what we expect from the

analytical results; however, it is initially below the marginal external cost of emissions, due

to deadweight losses and the low elasticity of emissions to the tax. The emissions tax is sig-

nificantly more important than subsidies: when a regulator can only use the tax (and cannot

subsidize research), 91 percent of the utility gain from optimal policy can still be achieved;

when the regulator can only use research subsidies (and cannot tax emissions), only 36

percent of utility gains can be achieved. The sensitivity analysis shows that the qualita-

tive results are robust to alternative parameter choices, and shifts in quantitative results are

predictable.

The model includes several simplifications which are important for the results. We as-

sume a single homogeneous fossil fuel, rather than following Golosov et al. (2014) and

distinguishing between coal and oil/gas, or developing even more detailed models of input

use. If we were to extend the model to allow for more inputs this could give further impor-

tant insights, especially if we simultaneously extended the model to include multiple energy

intermediates such as motive power (making things like cars move) and electricity supplied

through the grid. We would then need at least six separate knowledge stocks: coal/grid and

coal/motive power, oil/grid and oil/motive power, and finally clean/grid and clean/motive

power. If we had empirical evidence about these stocks and their potential development,

and about demand for the two intermediates, then we could find new and interesting results.

The analysis of this paper suggests that we would probably find that a transition away from

coal for electricity generation is already justified, implying that carbon taxes should be ap-

plied at close to the Pigovian level in this sector (i.e. equal to MEC), although not necessarily

in other sectors where the transition occurs later.

We assume periods of 10 years, with technologies replaced each period. In reality many

energy technologies (and the associated capital stocks) have much longer lifetimes than

this. In an extended model with long-lived capital goods, firms’ choices to invest in clean

or fossil capital goods (such as power stations) would depend on their expectations about

future policy, and if current policy were taken as a guide to the future this might mitigate

against sub-Pigovian taxation in the present.

Appendix A. First-order conditions and market structure

Appendix A.1. First-order conditions

The first-order conditions in L and Rt on (11) yield

wt = (1−α)A1−α

Lt (Rt/L)α (A.1)

and prt(1− srt) = α(ALtL/Rt)
1−α . (A.2)
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Now turn to 12 and take FOCs and then assume symmetric equilibrium to yield the following

equations. FOCs in inputs Xci and Di:

Xct = η prtR1−ε
t (ActXct)

ε (A.3)

and (pd + τdt)Dt = η prtR1−ε
t (AdtDt)

ε . (A.4)

FOCs in Zci and Zdi (and using 7–9):

(1+δzs2
zct)(1− szct)wztZct = ηAcztλctAct (A.5)

and (1+δzs2
zdt)(1− szdt)wztZdt = ηAdztλdtAdt , (A.6)

where ηAczt =
∂Act

∂Zct

Zct

Act
= φ

Kct − (1−δK)Kct−1

(K∗+Kct)Kct/K∗
(A.7)

and ηAdzt =
∂Adt

∂Zdt

Zdt

Adt
= φ

Kdt − (1−δK)Kdt−1

(K∗+Kdt)Kdt/K∗
. (A.8)

FOCs in Aci and Adi:

λcAct = η prtR1−ε
t (ActXct)

ε (A.9)

and λdAdt = η prtR1−ε
t (AdtDt)

ε . (A.10)

Obtaining equations FOC1–FOC5 is straightforward. FOC1 follows from (A.3) and (A.4),

FOC2 follows from (A.9) and (A.10), FOC3 and FOC4 follow from (A.5)–(A.8). To find

FOC5 is more involved. Rearrange (A.2), then find an expression for pr in terms of Ac, Ad ,

pd , and τd using (A.3), the production function for R (equation 3), and FOC1.

Appendix A.2. Market structure

Given the first-order conditions above, what are the profits made by each firm producing

energy services? Firm revenue is prR, and input costs are the sum of Xc, (pd +τd)D, and re-

search investments. Research investments change over time, thus causing profits to change.

This should cause incentives for entry or exit, complicating the model. To deal with this

problem, we first assume balance growth in which Kc and Kd are both much lower than K∗,

implying (equation 6) that productivity A grows linearly in knowledge K in each sector, and

with growth by a factor 1+θ per period. We can then insert Kct−1 = Kct/(1+θ) into A.7,

and then (given that Kct/K∗ is small, and applying the same procedure in the other sector)

we have

ηAczt = ηAczt = φ(θ +δK)/(1+θ).
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Now add together the input costs for the two energy inputs and research (using equations

A.3–A.10) to yield

Input costs = prRη [1+φ(θ +δK)/(1+θ)].

Now we want to find the value of η which will ensure zero profits on this b.g.p. That is the

value such that input costs are equal to revenue, prR. Hence we obtain equation 23.

This gives us a value for η that is consistent with free entry in the energy sector on a

b.g.p. However, in general the economy will not be on a b.g.p.: as Ac and Ad approach

their limits, research incentives will diminish, hence profits in the sector will rise and we

would expect entry into the sector. An interesting extension would be to allow η to vary

as a function of endogenous entry into the sector, approaching 1 when the mass of firms

approached infinity. However, this is beyond our scope here, and instead we set η at the

level consistent with balanced growth and low knowledge, and assume that it stays there

due to barriers to entry.

Appendix B. Proof of Proposition 2

First use the FOC in Act for the market economy to show that

λctAct = α(ALtL)1−αRα−ε
t (ActCt)

ε ,

and then show that the corresponding expression in the social planner’s economy is

µctAct = α(ALtL)1−αRα−ε
t (ActCt)

ε +β
[
µct+1Act+1ηAc/c +µdt+1Adt+1ηAd/c

]
.

Given that we have first-best regulation, the allocation in the planner’s economy is the same

as in the market economy, therefore we can simplify the above expression as follows:

µctAct =λctAct +β
[
µct+1Act+1ηAc/ct +µdt+1Adt+1ηAd/ct

]
. (B.1)

So the value of knowledge Act to the social planner is greater than its value to the represen-

tative firm, because knowledge in period t boosts knowledge in period t +1 (which in turn

boosts knowledge in t +2, and so on).

(i) Assume that we are on a b.g.p. with a growth factor 1+θ per period, and use (B.1) to

show that

µctAct =λctAct +β (1+θ)
[
µctActηAc/ct +µdtAdtηAd/ct

]
.
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Use the symmetric expression for µdtAdt and the assumptions regarding the elasticities

to show that λc/λd = µc/µd , and hence (using 17) that the optimal subsidy is zero.

(ii) Use (B.1) and the assumptions about elasticities to show that

µctAct

µdtAdt
=

λctAct +ηAc/cβλct+1Act+1 +(ηAc/cβ )2λct+2Act+2 + · · ·
λdtAdt +ηAc/cβλdt+1Adt+1 +(ηAc/cβ )2λdt+2Adt+2 + · · ·

. (B.2)

Given optimal regulation λcAc/(λdAd) grows monotonically ((FOC1) and (FOC2)),

so (B.2) implies that µctAct/(µdtAdt) > λctAct/(λdtAdt). But then (17) implies that

sz > 0, i.e. clean research should be subsidized.

Appendix C. Equations of the numerical model

Appendix C.1. The static model

We can solve the static model—in which we treat state variables as given—explicitly.

The resulting equations are A.1 and A.2 (derived above), and

R = ALL

 ηα

1− sr

[
Aε/(1−ε)

c +

(
Ad

pd + τd

)ε/(1−ε)
](1−ε)/ε


1/(1−α)

; (C.1)

Xc = R

[
Aε

c +Aε
d

(
Ac

Ad

)−ε2/(1−ε)

(pd + τd)
−ε/(1−ε)

]−1/ε

; (C.2)

D = R

[
Aε

c

(
Ac

Ad

)ε2/(1−ε)

(pd + τd)
ε/(1−ε)+Aε

d

]−1/ε

. (C.3)

Equations C.1, C.2, and C.3 are derived using the definition of R (3) and equations A.1–A.4.

First use A.3 and A.4 to yield

Xc

D
=

(
Ac

Ad

)ε/(1−ε)

(pd + τd)
1/(1−ε). (C.4)

Return to the definition of R to yield

R/D = [Aε
c(Xc/D)ε +Aε

d ]
1/ε

.

Now take A.4, insert A.2 and rearrange to yield

D = R
[

ηα(ALL/R)1−αAε
d

1
1− sr

1
pd + τd

]1/(1−ε)

and hence R =

{(
R
D

)1−ε [
ηα(ALL)1−αAε

d
1

1− sr

1
pd + τd

]}1/(1−α)

.
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Insert the above expressions for R/D and XC/D to yield

R =


[

Aε
c

(
Ac

Ad

)ε2/(1−ε)

(pd + τd)
ε/(1−ε)+Aε

d

](1−ε)/ε

ηα(ALL)1−αAε
d

1
1− sr

1
pd + τd


1/(1−α)

,

and hence

R =

ηα(ALL)1−αAd
1

1− sr

1
pd + τd

[(
Ac

Ad

)ε/(1−ε)

(pd + τd)
ε/(1−ε)+1

](1−ε)/ε


1/(1−α)

,

and finally rearrange to yield C.1. So we have an explicit solution for R in terms of state

variables and the regulatory instruments sr and τd . And using the equations for R/D and

Xc/D above we can directly obtain equations C.2 and C.3.

Finally, we need the equations for crt and c∗rt , unit costs of producing the energy interme-

diate with and without the tax. To find crt , divide total costs Xc + pdD by quantity R (from

equation 3), then substitute for Xc/D using C.4. Rearrange to obtain

crt =
{

Aε/(1−ε)
ct +[Adt/(pd + τdt)]

ε/(1−ε)
}−(1−ε)/ε

. (C.5)

Then c∗rt is found by setting τdt = 0. (Note also that crt = η prt ; unit costs are lower than the

price because of market power.)

Appendix C.2. The dynamic model

Now we have the static solution, we must turn to the dynamic problem. Throughout

these equations we substitute productivity Ac and Ad for knowledge Kc and Kd using equa-

tions 8, in order to reduce the number of variables in the numerical model.

The first two equations of the dynamic model follow directly from the production func-

tions for knowledge, 9 and 10, after substituting for Kc and Kd using equations 8. The second

two equations are as follows (note that we continue without explicit time subscripts, and use

a subscript “−” to denote period t−1):

Zc
1−φ = ζ ηφL

α

1−α

Aσ1
L−(K

∗)1−σ1
[
Ac−/(Āc−Ac−)+σ2Ad−/(Ād−Ad−)

]1−σ1

(1+δzs2
zc)(1− szc)(1− sr)

(Āc−Ac)
2

ĀcAcK∗
1

1+[(Ac/Ad)(pd + τd)]
−ε/(1−ε)

; (C.6)

Zd
1−φ = ζ ηφL

α

1−α

(AL−/K∗)σ1
[
Ad−/(Ād−Ad−)+σ2Ac−/(Āc−Ac−)

]1−σ1

(1+δzs2
zd)(1− szd)(1− sr)

(Ād−Ad)
2

ĀdAd

1

1+[(Ac/Ad)(pd + τd)]
ε/(1−ε)

. (C.7)
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To derive these equations, take A.5, substitute for ηAczt and λct , then substitute for

wL/(prR) using equations A.1–A.2, and rearrange to yield

Zc

L
= ηφ

1
1+δzs2

zc

1
1− szc

1
1− sr

α

1−α

Kc− (1−δK)Kc−
(K∗+Kc)Kc/K∗

(
AcXc

R

)ε

.

Now substitute from the production function for knowledge and collect terms in Zc to yield

Zc
1−φ = ηφL

1
1+δzs2

zc

1
1− szc

1
1− sr

α

1−α

Aσ1
L− (Kc−+σ2Kd−)

1−σ1 ζ

(K∗+Kc)Kc/K∗

(
AcXc

R

)ε

.

Now substitute for Kc and Kd using 8, and for AcXc/R using C.2, and then use symmetry, to

yield C.6 and C.7.

Appendix C.3. Scarcity rent

When climate policy is sufficiently weak or non-existent the resource is exhausted asymp-

totically and there is a positive scarcity rent, which must increase by a factor 1/β per period

(Hotelling). Equation 19 becomes

max
[srt ,szct ,szdt ,τdt ]

T
t=0

U =
T

∑
t=0

β
t
[
(ALtL)1−αRα

t −Xct − (pd +ρ/β
t)Dt −δτ(crt − c∗rt)Rt (C.8)

−wzt((1+δzs2
zct)Zct +(1+δzs2

zdt)Zdt)
]

exp(−γ1Sγ2
t ),

where ρ is the scarcity rent at t = 0, the level of which is such that the resource is exhausted

asymptotically. (This can be stated formally through a transversality condition.) Turning

to the first-order conditions, the effect is that wherever we have pd + τdt we replace it with

pd +ρ/β t + τdt .

Appendix D. Parameterization

Appendix D.1. Calibration of δz and φ

The calibration of δz and φ is based on the assumption that observed aggregate research

subsidies sz are optimally chosen by the regulator with perfect information. Furthermore,

given these subsidies we observe a proportion s of aggregate resources devoted to research,

and resultant growth by a factor 1+ θ per period. It builds on US data from the National

Science Foundation23 which shows that 3 percent of resources are devoted to research, and

that 30 percent of total research funding comes from the state. We take the latter figure

directly, whereas we revise the former up to 5 percent in our parameterization, for two

reasons: firstly because some activities not recorded as research are likely to be research

23The data is at http://www.nsf.gov/statistics/natlpatterns/.
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in the sense used in the model; and secondly because in the model we assume that the

performance of research and the delivery of its results are simultaneous, whereas in reality

research must be performed in advance. Assume that 3.6 percent of workers are engaged

in research devoted to raising productivity in period t, and this research is performed in

period t− 1. Then the wage wt−1 = wt/(1+ θ), but the present value in period t of those

wages is wt/[β (1+θ)], and research costs are 0.05wtL. We normalize L = 1, and follow our

assumption from the main model by setting δA = 0.01. And we assume (based on Maddison

data) that long-run growth in per-capita GDP is 2 percent per year, so θ = 1.0210−1 = 0.22.

Research Growth Labour

sz 0.3 θ 0.22 L 1
s 0.05 δA 0.01

Table D.4: Input parameters to calibration model

The calibration model—without an energy sector—is as follows. Labour L is the only

input to both production LY and research Z. Aggregate production is determined by effective

labour,

Yt = ALtLY ,

while knowledge production in firm i is determined by effective research inputs Zi:

ALit = (1−δA)ALt−1 +ζ ALt−1Zφ

it . (D.1)

As previously in the energy sector, there is a unit continuum of firms competing monopolis-

tically to sell their differentiated products, and the demand elasticity for a given product is

1/(1−η). In the market economy firm i’s problem is

max
Lit

πit = ALit(Zlit)Lit −wtLit −wt(1− szt)(1+δzs2
zt)Zit ,

subject to the knowledge production function, where sz is the subsidy to research, and δzs2
z Z

are labour inputs in the research sector which are not productive, and thus wasted. The

Lagrangian for firm i in period t is as follows:

Lit = ALitLit −wtLit −wt(1− szt)(1+δzs2
zt)Zit −λit

[
ALit − (1−δA)ALt−1−ζ ALt−1Zφ

it

]
.

Take first-order conditions in Lit , Zlit , and ALit and assume symmetric equilibrium to yield

Z1−φ

t (1−δA +ζ Zφ

t ) =
φζ L

(1− sz)(1+δzs2
z )
. (D.2)
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Assume balanced growth by a factor 1+ θ per period and use the knowledge production

function (D.1) to show that

ζ Zφ

t = δA +θ , (D.3)

and given that the fraction of labour devoted to research is defined as s, so (1+δzs2
z )Z/L= s,

we have the following expression for the research productivity parameter ζ :

ζ =
δA +θ

[sL/(1+δzs2
z )]

φ
. (D.4)

Insert D.3 into D.2 and use the definition of s again to yield

φ = s(1− sz)
1+θ

δA +θ
= 0.19. (D.5)

Now that we know φ , equation D.4 gives us ζ as a function of δz. Which leaves us with the

problem of finding δz.

To find δz we turn to optimal regulation. Our strategy is as follows: for any given δz, we

know ζ and hence we know all the parameters of the model. Given these parameters we can

find the optimal value of the subsidy sz, which is unique as long as sz is strictly decreasing

in δz; we choose the unique value of δz for which sz = 0.3. (And we know from the analysis

of the firms’ problem above that this will lead to the desired research allocation and growth

rate.) The result is δz = 1.14.24

Appendix D.2. Parameterization of starting values and limits in energy sector

We normalize the price of fossil fuels pd = 1, and initial fossil productivity Ad0 = 1. We

then assume that 5 percent of augmented energy comes from renewable sources in period

24The regulator chooses sz to boost Z. We therefore need the relationship between the two, which is given
by equation D.2. We must then insert this into the regulator’s utility function to find the optimal values of
sz and Z. To set up the utility function, first note that there is only one state variable—AL —and that the
regulator will always choose the same value of σz whatever the initial value of this variable. Hence the optimally
regulated economy will always be on a balanced growth path (b.g.p.), and we can write the utility function as
U = ∑

∞
t=0 Y0(Z)β ∗(Z)t where Y0 is initial production, and β ∗ is the growth-adjusted discount factor:

Y0(Z) = AL0L[1−Z(1+δzs2
z )/L];

β
∗(Z) = (1−δA +ζ Zφ )β .

Furthermore, given balanced growth we can write the utility function as

U = Y0(Z)(1−β
∗(Z)).

All we need to do now to find the optimal sz is to (numerically) take the locus of allowed points in (sz,Z) space,
and insert them into the utility function to plot utility as a function of sz. If the value of sz obtained is less than
0.3, this implies that our original choice of δz was too high, and vice versa. We adjust δz and iterate until we
find the value of δz which gives an optimal sz = 0.3.
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zero. Then we can use FOC1 to find Ac0 (which equals Ac0/Ad0):

Ac0 = (5/95)(1−ε)/ε = 0.3748.

So clean energy is initially 2.67 times more expensive than fossil.25 Next we normalize

L = 1, and use equations C.1–C.3 to find D0 as a function of AL0,26 and choose AL0 to

deliver a period-zero rate of carbon emissions D0 such that S (the excess stock, in ppmv)

increases from 97.5 at the start of period zero (at the beginning of 2005) to 118.6 at the

start of period one (end of 2014).27 This implies (based on our stock–decay model) that

D0 = 26.6, which gives us AL0 = 655.

The next step is to find suitable initial knowledge stocks Kc0 and Kd0. We require of

these stocks that they are broadly consistent with historical energy shares. We start with

Kd0, initial fossil-energy knowledge. Since the share of fossil energy in the overall economy

has historically been around 5 percent, then (following Hart (2013)) around 5 percent of

total research inputs should have gone to fossil-energy research historically. Given that we

have AL0, we can use equation 10 to find a value for Kd0 which is consistent with such a rate

of investment, assuming balanced growth and negligible spillovers of knowledge from clean

to fossil:

Kd0 = AL0

(
ζ{αLs/[1+δzs2

z ]}φ

θ +δK

)1/σ1

.

To link Kd0 to Ad0 we need to know K∗. To find K∗ we assume that fossil productivity Ad0 is

at 67 percent of the limit Ād (recall that the best coal-fired power stations are at 75 percent),

so Ad0/Ād = 2/3 (and Ād = 1.5). This implies that Kd0/(K∗+Kd0) = 2/3, so

K∗ = Kd0/2.

Our choice of Āc determines the lower limit on clean-energy costs relative to fossil costs

(without allowing for scarcity rent or emissions taxes). We set the limiting costs equal,

implying that Āc = Ād , since pd = 1. The appropriate value here is very uncertain, de-

pending crucially on the long-run prospects of cost reductions in renewable technologies.

25Note that this calibration involves a series of simplifications, inevitable given the simplified nature of the
model. First, in reality there will not be a constant elasticity of substitution between renewable and fossil energy.
Second, there are many types of non-fossil energy, including wind and solar but also nuclear; furthermore, there
are also many types of fossil input (e.g. coal, oil, and gas). Third, the relative costs of augmented energy are
not observable; even if we can observe spot prices for electricity produced from coal and wind, these prices are
a result of the market interaction. Furthermore, energy intermediates have different qualities; in the model we
aggregate electric power from the grid with motive power generated in a car’s internal combustion engine.

26We know η (equation 23), and we assume that the period-zero tax on fossil fuels is zero, while the energy
sector is subsidized at sr = 1−η .

27Thus we match the data from the Mauna Loa Observatory, Hawaii, given a baseline concentration of 280.
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Our assumption here is optimistic compared to Acemoglu et al. (2016), who assume that

long-run fossil costs are 85 percent of long-run renewable costs, assuming equal levels of

technology.28, 29 And then we have Kc0 = K∗Ac0/(Āc−Ac0) = 0.1665Kd0.

The initial stock of fossil fuels, Q0, is irrelevant in the scenarios with optimal regulation,

because fossil fuels are not exhausted. However, in scenarios when we restrict the behaviour

of the regulator (for instance by assuming laissez-faire) then fossil fuels are exhausted, and

we need a limit on the total quantity. We set this limit such that in our high-emissions sce-

narios with fossil exhaustion the atmospheric concentration peaks at around 1000 ppm. This

is highly uncertain, and our choice is optimistic in the sense that fossil fuels are assumed

to run out (or become too expensive to extract) at a lower level than predicted in the latest

IPCC report.30
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