

Part 7

Substitution between alternative resource inputs

A simple model with alternative resource inputs

- A simple model with alternative resource
inputs
- Technological change

Recall: $\quad Y=\left(A_{L} L\right)^{1-\alpha}\left(A_{R} R\right)^{\alpha}$.

$$
\begin{aligned}
\max \pi & =p_{y}\left(A_{L} L\right)^{1-\alpha}\left(A_{R} R\right)^{\alpha}-w_{l} L-w_{r} R ; \\
w_{r} R & =\alpha Y .
\end{aligned}
$$

Now $\quad R_{t}=\left[\left(\gamma_{c} A_{c t} X_{c t}\right)^{\epsilon}+\left(\gamma_{d} A_{d t} X_{d t}\right)^{\epsilon}\right]^{1 / \epsilon}$.
Assume $A_{c}=A_{d}=A$, and fix $A_{R}=1$.

$$
\begin{aligned}
Y_{t} & =\left(A_{t} L_{t}\right)^{1-\alpha} R_{t}^{\alpha}, \\
R_{t} & =A_{t}\left[\left(\gamma_{c} X_{c t}\right)^{\epsilon}+\left(\gamma_{d} X_{d t}\right)^{\epsilon}\right]^{1 / \epsilon}, \\
C_{t} & =Y_{t}-\left(w_{c t} X_{c t}+w_{d t} X_{d t}\right),
\end{aligned}
$$

and

A simple model with alternative resource inputs

- A simple model with alternative resource
inputs
- Technological change

$$
\pi=w_{r t} A_{t}\left[\left(\gamma_{c} X_{c t}\right)^{\epsilon}+\left(\gamma_{d} X_{d t}\right)^{\epsilon}\right]^{1 / \epsilon}-w_{c t} X_{c t}-w_{d t} X_{d t}
$$

$$
w_{c} X_{c}=w_{r}(R / A)^{1-\epsilon}\left(\gamma_{c} X_{c}\right)^{\epsilon}
$$

$$
\text { and } \quad w_{d} X_{d}=w_{r}(R / A)^{1-\epsilon}\left(\gamma_{d} X_{d}\right)^{\epsilon}
$$

$$
w_{c} X_{c}=w_{r}^{1 /(1-\epsilon)}(R / A)\left(\gamma_{c} / w_{c}\right)^{\epsilon /(1-\epsilon)}
$$

$$
\text { and } \quad w_{d} X_{d}=w_{r}^{1 /(1-\epsilon)}(R / A)\left(\gamma_{d} / w_{d}\right)^{\epsilon /(1-\epsilon)}
$$

- A simple model with
alternative resource
inputs
- Technological change

A simple model with alternative resource inputs

$$
\begin{aligned}
\pi & =w_{r t} A_{t}\left[\left(\gamma_{c} X_{c t}\right)^{\epsilon}+\left(\gamma_{d} X_{d t}\right)^{\epsilon}\right]^{1 / \epsilon}-w_{c t} X_{c t}-w_{d t} X_{d t} \\
w_{c} X_{c} & =w_{r}(R / A)^{1-\epsilon}\left(\gamma_{c} X_{c}\right)^{\epsilon} \\
\text { and } \quad w_{d} X_{d} & =w_{r}(R / A)^{1-\epsilon}\left(\gamma_{d} X_{d}\right)^{\epsilon} \\
w_{c} X_{c} & =w_{r}^{1 /(1-\epsilon)}(R / A)\left(\gamma_{c} / w_{c}\right)^{\epsilon /(1-\epsilon)} \\
\text { and } \quad w_{d} X_{d} & =w_{r}^{1 /(1-\epsilon)}(R / A)\left(\gamma_{d} / w_{d}\right)^{\epsilon /(1-\epsilon)}
\end{aligned}
$$

So the relative factor shares of the resources are

$$
\frac{w_{c} X_{c}}{w_{d} X_{d}}=\left(\frac{\gamma_{c} / w_{c}}{\gamma_{d} / w_{d}}\right)^{\epsilon /(1-\epsilon)}
$$

This implies that the resource that is cheaper per efficiency unit takes the larger factor share, and the advantage is bigger the higher is the substitutability between the resources (i.e. when $\epsilon \rightarrow 1$).

A simple model with alternative resource inputs

- A simple model with alternative resource inputs
- Technological change

$$
\pi=w_{r t} A_{t}\left[\left(\gamma_{c} X_{c t}\right)^{\epsilon}+\left(\gamma_{d} X_{d t}\right)^{\epsilon}\right]^{1 / \epsilon}-w_{c t} X_{c t}-w_{d t} X_{d t}
$$

$$
w_{c} X_{c}=w_{r}(R / A)^{1-\epsilon}\left(\gamma_{c} X_{c}\right)^{\epsilon}
$$

$$
\text { and } \quad w_{d} X_{d}=w_{r}(R / A)^{1-\epsilon}\left(\gamma_{d} X_{d}\right)^{\epsilon}
$$

$$
w_{c} X_{c}=w_{r}^{1 /(1-\epsilon)}(R / A)\left(\gamma_{c} / w_{c}\right)^{\epsilon /(1-\epsilon)}
$$

$$
\text { and } \quad w_{d} X_{d}=w_{r}^{1 /(1-\epsilon)}(R / A)\left(\gamma_{d} / w_{d}\right)^{\epsilon /(1-\epsilon)}
$$

Because we have perfect markets, price equals unit cost so

$$
\begin{aligned}
w_{r} & =\left(w_{c} X_{c}+w_{d} X_{d}\right) / R \\
& =w_{r}^{1 /(1-\epsilon)}(1 / A)\left[\left(\gamma_{c} / w_{c}\right)^{\epsilon /(1-\epsilon)}+\left(\gamma_{d} / w_{d}\right)^{\epsilon /(1-\epsilon)}\right] \\
& =\left\{A /\left[\left(\gamma_{c} / w_{c}\right)^{\epsilon /(1-\epsilon)}+\left(\gamma_{d} / w_{d}\right)^{\epsilon /(1-\epsilon)}\right]\right\}^{\epsilon /(1-\epsilon)}
\end{aligned}
$$

 alternative resource
inputs

- Technological change

A simple model with alternative resource inputs

So we have

$$
w_{r}=\left\{A /\left[\left(\gamma_{c} / w_{c}\right)^{\epsilon /(1-\epsilon)}+\left(\gamma_{d} / w_{d}\right)^{\epsilon /(1-\epsilon)}\right]\right\}^{\epsilon /(1-\epsilon)}
$$

A simple model with alternative resource inputs

- A simple model with alternative resource
- Technological change

So we have

$$
w_{r}=\left\{A /\left[\left(\gamma_{c} / w_{c}\right)^{\epsilon /(1-\epsilon)}+\left(\gamma_{d} / w_{d}\right)^{\epsilon /(1-\epsilon)}\right]\right\}^{\epsilon /(1-\epsilon)}
$$

And since $w_{r} R=\alpha Y$ we have

$$
w_{r}=\alpha(A L / R)^{1-\alpha}
$$

and we can eliminate w_{r} to yield

$$
R=A L\left\{\alpha\left[\left(\gamma_{c} / w_{c}\right)^{\epsilon /(1-\epsilon)}+\left(\gamma_{d} / w_{d}\right)^{\epsilon /(1-\epsilon)}\right]\right\}^{1 /(1-\alpha)}
$$

So if w_{c} and w_{d} are both constant then R grows at the same rate as Y, i.e. $g+n$, the sum of the growth rates of labour productivity and population.

- A simple model with alternative resource inputs
- Technological change

A simple model with alternative resource inputs

Long-run growth in prices and factor expenditure, compared to growth in global product, for crude oil and coal, and a test of the model. In the left-hand figure we see observed prices and expenditures, with expenditures compared to global product. In the middle figure we see observed total expenditure on coal and oil, compared to the model prediction (based on the prices). And in the right-hand figure we see the observed relative factor shares of coal and oil, compared to the model prediction. In the calibrated model we have $\alpha=0.02, \gamma_{c} / \gamma_{d}=0.55$, and $\epsilon=0.76$.

- A simple model with alternative resource inputs
- Technological change

A simple model with alternative resource inputs

Long-run growth in prices and factor expenditure, compared to growth in global product, for iron and aluminium, and a test of the model. In the left-hand figure we see observed prices and expenditures, with expenditures compared to global product. In the middle figure we see observed total expenditure on iron and aluminium, compared to the model prediction (based on the prices). And in the right-hand figure we see the observed relative factor shares of iron and aluminium, compared to the model prediction. In the calibrated model we have $\alpha=0.002$, $\gamma_{c} / \gamma_{d}=50$, and $\epsilon=0.55$.

Technological change

- A simple model with alternative resource inputs
- Technological change

Technological change

- A simple model with alternative resource inputs
- Technological change

Recall that relative investments are equal to relative factor shares in a model with L and R :

$$
\frac{z_{l t}}{z_{r t}}=\frac{w_{l t} L_{t}}{w_{r t} R_{t}}=\left(\frac{A_{l t} L_{t}}{A_{r t} R_{t}}\right)^{\epsilon}
$$

In a model with C and D making R we have

$$
\frac{z_{c t}}{z_{d t}}=\frac{w_{c t} C_{t}}{w_{d t} D_{t}}=\left(\frac{A_{c t} C_{t}}{A_{d t} D_{t}}\right)^{\epsilon}
$$

If we add the assumption that knowledge stocks grow independently then we have

$$
\frac{A_{c t} / A_{c t-1}}{A_{d t} / A_{d t-1}}=\left(\frac{z_{c t}}{z_{d t}}\right)^{\phi}\left(\frac{\zeta_{d}}{\zeta_{c}}\right)
$$

Technological change

- A simple model with alternative resource inputs
- Technological change

$$
\begin{aligned}
& \frac{z_{c t}}{z_{d t}}=\frac{w_{c t} C_{t}}{w_{d t} D_{t}}=\left(\frac{A_{c t} C_{t}}{A_{d t} D_{t}}\right)^{\epsilon} \\
& \frac{A_{c t} / A_{c t-1}}{A_{d t} / A_{d t-1}}=\left(\frac{z_{c t}}{z_{d t}}\right)^{\phi}\left(\frac{\zeta_{d}}{\zeta_{c}}\right) .
\end{aligned}
$$

Now assume a b.g.p. on which relative prices are exogenous and constant. Then z_{c} / z_{d} must be constant, and also A_{c} / A_{d}. So

$$
\frac{A_{c t} / A_{c t-1}}{A_{d t} / A_{d t-1}}=1=\left(\frac{w_{c t} C_{t}}{w_{d t} D_{t}}\right)^{\phi}\left(\frac{\zeta_{d}}{\zeta_{c}}\right)=\left(\frac{A_{c t} C_{t}}{A_{d t} D_{t}}\right)^{\epsilon \phi} \frac{\zeta_{d}}{\zeta_{c}}
$$

So on a b.g.p. the shares of C and D are fixed. But is the b.g.p. stable?
Technological change

- A simple model with
alternative resource
inputs
- Technological change

Imagine the economy is on a b.g.p., and then a small shock shifts it
Such that the share of C increases. What happens?

Technological change

- A simple model with alternative resource inputs
- Technological change

$$
\begin{aligned}
\text { We have } & \frac{w_{c t} C_{t}}{w_{d t} D_{t}} & =\left(\frac{A_{c t} C_{t}}{A_{d t} D_{t}}\right)^{\epsilon} \\
\text { and } & \frac{A_{c t} / A_{c t-1}}{A_{d t} / A_{d t-1}} & =\left(\frac{w_{c t} C_{t}}{w_{d t} D_{t}}\right)^{\phi} \\
\text { hence } & \frac{w_{c t} C_{t}}{w_{d t} D_{t}} & =\left(\frac{A_{c t}}{A_{d t}}\right)^{\epsilon /(1-\epsilon)}\left(\frac{w_{c t}}{w_{d t}}\right)^{-\epsilon /(1-\epsilon)} \\
\text { and } & \frac{A_{c t} / A_{c t-1}}{A_{d t} / A_{d t-1}} & =\left(\frac{A_{c t} / w_{c t}}{A_{d t} / w_{d t}}\right)^{\epsilon \phi /(1-\epsilon)}
\end{aligned}
$$

Multiply both sides by $\left(\frac{A_{c t} / A_{c t-1}}{A_{d t} / A_{d t-1}}\right)^{-\epsilon \phi /(1-\epsilon)}$ to obtain

$$
\frac{A_{c t} / A_{c t-1}}{A_{d t} / A_{d t-1}}=\left(\frac{A_{c t-1} / w_{c t}}{A_{d t-1} / w_{d t}}\right)^{\epsilon \phi /(1-\epsilon(1+\phi))}
$$

- A simple model with
- A simple model with
alternative resource inputs
- Technological change

Technological change

We have

$$
\frac{A_{c t} / A_{c t-1}}{A_{d t} / A_{d t-1}}=\left(\frac{A_{c t-1} / w_{c t}}{A_{d t-1} / w_{d t}}\right)^{\epsilon \phi /(1-\epsilon(1+\phi))}
$$

Assume we are on a b.g.p., and let A_{c} rise a little due to a shock. What happens?

Is the b.g.p. stable?

- A simple model with alternative resource inputs
- Technological change

Technological change

Figure 1: Illustration of how relative prices (the shape of the economic landscape) determine the relative levels of technology augmenting clean and dirty inputs in the model, and the role of a regulator.

Evidence?

What went wrong?

